

OKLAHOMA GAS & ELECTRIC
MUSTANG/TINKER STATION
5A GENERATOR ROTOR REWIND
FALL 2011 OUTAGE
Document No. 11G799

Prepared by
Nick Spanoudakis
and
Josh Schweinsberg
Generator & Motor Services, LLC

March 2012

INDEX

Section	Page
I. INTRODUCTION	1
II. INCOMING INSPECTION FINDINGS AND RECOMMENDATIONS	1
A. Exciter Visual Findings and Recommendations	2
B. Rotor Visual Findings and Recommendations	2
C. Incoming Electrical Tests and Measurements	3
D. Exciter Electrical Component Tests	4
III. NON-DESTRUCTIVE TESTS CONDUCTED AFTER DISASSEMBLY	4
A. NDE Testing	4
B. NDE Findings and Recommendations	5
IV. REPAIRS AND REPLACEMENT COMPONENT TESTS.....	5
V. ROTOR RE-ASSEMBLY AND TESTING.....	6
VI. HIGH SPEED BALANCE AND TESTING.....	7
VII. SUMMARY	7

APPENDIX A: PHOTOGRAPHS

APPENDIX B: TEST DATA

APPENDIX C: NDE TEST RESULTS

APPENDIX D RETAINING RING FORGING CERTIFICATIONS

APPENDIX E HIGH SPEED BALANCE REPORT

BGMS GENERATOR ROTOR REWIND REPORT
for
OKLAHOMA GAS & ELECTRIC
Mustang/Tinker Unit 5A Generator

I. INTRODUCTION

On October 13, 2011, a 47-MW Twin-Pac Electric Machine generator rotor from the OG&E Mustang Tinker Station 5A generator arrived at Brush Generator & Motor Service (BGMS) for a complete rewind and an overhaul of its shrunk-on brushless exciter. Work was carried out under OG&E Purchase Order 4500573019.

In addition to the rotor, the bearings, seals and exciter stator were crated and shipped to BGMS. Upon receipt, work proceeded in accordance with GMS Quality Plan using specifications and procedures defined by the project Traveler (Route Card).

Close coordination was maintained with Oklahoma Gas & Electric throughout the project. As contracted, the field rewind, inspection, repair, reassembly, high-speed balancing and final electrical tests were successfully completed and the rotor was shipped back to the Mustang Tinker Station in Oklahoma on Feb. 18, 2012.

II. INCOMING INSPECTION FINDINGS AND RECOMMENDATIONS

While it was being unloaded at the BGMS facility, an appreciable amount of water poured out of the rotor indicating high likelihood of water damage to the insulation. In this condition, and in light of the plans for a rewind, rotor incoming electrical measurements were restricted. However, Megger testing indicated a ground wall short in the rotor.

After disconnecting the exciter armature from the rotor, standard incoming exciter electrical tests were completed and results are given below. All testing and inspections were performed in accordance with formal GMS Rotor Receiving Incoming Inspection and Test Procedures.

After completion of incoming inspection, a Findings and Recommendations Report (GMS Document No. GR1533S) was issued to OG&E on October 29, 2011. Inspection results and BGMS recommendations are summarized as follows:

A. Exciter Visual Inspection and *Recommendations*

- General condition of the exciter appeared to be acceptable for reconditioning. See Appendix A, Figure 1
- During disassembly of the diode wheel, the insulating bushing around the bolt for the #6 fuse was found to be missing. The insulation had been replaced by wrapping the bolt in electrical tape. See Appendix A, Figure 2. *BGMS recommended replacing all insulating components.*
- Many of the insulating components for the diode wheel hardware were found to be poor condition. See Appendix A, Figure 3. *BGMS recommended replacing all insulating components.*
- All twelve diodes were found to be in poor condition. The ends of the flexible connectors were most likely trimmed, twisted to reduce overall length and then tied with wire (see Appendix A, Figures 4 and 5). The diodes should appear as shown in Figure 6. *BGMS recommended replacing all twelve (12) diodes with new properly manufactured diodes.*
- Insulation on the exciter stator connection wires was found to be brittle and damaged in several areas, see Appendix A, Figure 7. *BGMS recommended removing existing insulation from all connections and replacing with new insulation.*
- The ground detector was found to be disconnected from the diode wheel terminal. Wires exiting the ground detector had been cut off. See Appendix A, Figure 8. *BGMS recommended replacing the ground detector.*
- Minor damage was found on the outboard exciter armature band, see Appendix A, Figure 9. In addition, some cracking was found in the paint on the bottom of the armature coil series connections. *BGMS recommended light sanding of the exposed band surface and applying a coat of epoxy resin to the banding and to areas of the armature coils.*
- Two heaters were found to be missing from the exciter stator. *BGMS recommended replacing the heaters.*

B. Rotor Visual Findings and *Recommendations*

- The rotor bearings were found to be wiped as shown in Appendix A, Figure 10. *BGMS recommended Babbitt replacement on both bearings.*
- Upon removal, the rotor end winding blocking was found in poor condition. See Appendix A, Figure 11. *BGMS recommended replacing all rotor blocking.*
- Multiple J-lead wedges were found to be in poor condition. See Appendix A, Figure 12. *BGMS recommended replacing all J-lead wedges.*
- The retaining ring keys were highly deformed and sheared in multiple areas upon removal. *BGMS recommended replacing both retaining ring keys.*

- Cracks were found in multiple copper turns during inspection conducted while coils were being removed from the rotor. See Appendix A, Figure 13. A more complete assessment was made after the bonded insulation material has been removed from the coils. *BGMS recommended grinding minor cracks and filling with brazing material and in more severe cases, replacement of whole sections of material was found to be required.*
- The rotor end wedges had significant loss of material, most likely due to electrical arcing. Three rotor end wedges were damaged during retaining ring removal and required replacement. See Appendix A, Figure 14. *BGMS recommended sending the end wedge material out for analysis and replacing the three wedges damaged during ring removal. Subsequent NDE test results led to an expansion of this recommendation to include replacing all rotor slot wedges (see below).*
- Aluminum deposits were found on the fit-surface of the retaining ring as shown in Appendix A, Figure 15. It is believed to have been a material transfer from the end wedges due to arcing. The presence of this aluminum prevented visual inspection as well as NDE of the fit area in those regions. *BGMS recommended performing machining of the raised aluminum material to evaluate pitting beneath the transferred material.*

C Rotor Electrical Tests and Measurements

As indicated above, rotor incoming electrical measurements were restricted to ground wall insulation resistance measurements. Results shown in Appendix B-1 indicated a circuit-to-ground short. In light of this data and the plan to rewind the rotor, no additional incoming electrical tests were attempted, with the exception of D.C. winding resistance, which is also shown in Appendix B-1.

Prior to disassembly, the rotor was mounted in a lathe for dimensional measurements. Rotor diameter measurements are contained in Appendix B-2 and Total Indicated Run-Out (TIR) data are given in Appendix B-3. These results do not indicate mechanical concerns.

After completion of rotor measurements, all shrunk-on parts were match-marked. Following this, coupling and blowers were removed from the shaft to allow removal of the diode wheel and exciter.

After removal of the D-lead (bore copper) insulating tube and insulating divider, high potential tests were conducted to verify that these component were-qualified for use. All insulating components passed the tested and were deemed suitable for operation.

D Exciter Electrical Component Tests

Prior to or during disassembly, the following incoming electrical tests were conducted on the exciter with the results in the presented in Appendix B.

- Exciter Insulation Resistances – See Appendix B-4.
- Exciter Winding Resistances – See Appendix B-4.
- Stator Resistance – See Appendix B-5.
- Field Coil Pole Drop Test – See Appendix B-5.
- Diode Wheel Fuse Resistances – See Appendix B-6.
- Diode Hi-Pot Leakage Tests – See Appendix B-7.
- Forward and Reverse Diode Resistances – See Appendix B-8.

No electrical anomalies were detected.

III. NON-DESTRUCTIVE TESTS CONDUCTED AFTER DISASSEMBLY

After inspection and testing described above, the rotor retaining rings were removed and the coils were secured with banding. The wedges were marked and removed for inspection. The main leads, blocking, coils and insulation were then carefully removed. Test results, inspection observations and *recommendations* recorded during these disassembly steps are discussed below.

A. NDE TESTING

After thoroughly cleaning of all rotor components that are prone to develop increased hardness or cracking, Non-Destructive Examination (NDE) tests and inspections were performed. The following NDE test reports and photographs are compiled in Appendix C.

- J-Lead Wedges Liquid Penetrant Inspection – See Appendix C-1 and C-2.
- Body Wedges Liquid Penetrant Inspection – See Appendix C-3 and C-4.
- Shafts, Journals & Coupling Magnetic Particle Inspection – See Appendix C-5.
- Rotor Body Magnetic Particle Inspection – See Appendix C-6 through C-8.
- Retaining Ring Magnetic Particle Inspection – See Appendix C-9 through C-11.
- Retaining Ring Hardness Tests – See Appendix C-12 through C-14.
- Blower Fans Magnetic Particle Inspection – See Appendix C-15.
- J-Lead Ultrasonic Inspection – See Appendix C-16.

B. NDE FINDINGS AND RECOMMENDATIONS

The following Findings and Recommendations were issued, based upon results of NDE tests described in the previous section. *Recommendations are shown in italics.*

- Three rotor body teeth in the ring fit area were damaged during removal of the turbine end retaining ring. Local dye penetrant testing of those teeth uncovered indications at the root of the outboard teeth. See Appendix A, Figures 16 and 17. *BGMS recommended machining out the indications and performing a verification dye penetrant test.*
- Magnetic particle testing of the EE retaining ring uncovered four indications on the radius transition located at the nose of the ring. These test results were verified in a subsequent dye penetrant test. See Appendix A, Figures 18 and 19. Hardness readings taken around the cooling holes of the retaining ring were found to be above the 38 HRC specification limit. Results of hardness measurements taken in control areas removed from the cooling holes were satisfactory. *In light of linear indications found in a highly stressed area of the EE ring and out-of-specification hardness measurements found on both rings and considering the age of the rings as well as the amount of cyclic operation seen by this rotor, BGMS recommended replacing both retaining rings.*
- Magnetic particle testing of the rotor body showed 34 indications in the tooth top region. See Appendix A, Figures 20 and 21. *In light of the tooth-top indications and the need to replace retaining rings, BGMS recommended that a "Long Ring Modification" be performed. In this modification, the shrink-fit geometry is changed in a fashion that eliminates conditions that produce tooth-top cracking. After machining the tooth-tops for the Long Ring Modification, all machined areas would be de-burred and magnetic particle examination repeated.*
- A sample of 15 rotor slot wedges was dye penetrant tested. Indications were found on the wedge lands. The majority of the wedges had signs of pitting from either arcing or fretting on the wedge lands. *BGMS recommended replacing all wedges.*

Essentially all of the GMS recommendations were subsequently approved by OG&E Engineering.

IV. REPAIRS AND REPLACEMENT COMPONENT TESTS

Based on GMS recommendations, the following repairs were implemented before reassembly of the exciter and rotor:

- The bearings were sent to a subcontractor for refurbishment including replacement of all Babbitt material. Refurbished bearing inspection results are presented in Appendix B-9 (Drive End) and B-10 (Exciter End).

- All J-lead wedges were remanufactured. The new J-Lead wedges were liquid penetrant test with satisfactory results as shown in Appendix C-17.
- New ASTM A288-91 magnetic retaining ring forges were procured and the rings were final machined for the “Long Ring Modification.” Appendix D contains certifications for the two rings. Magnetic Particle inspection results for the finish-machined rings are presented in Appendix C-18.
- New retaining ring keys were manufactured.
- All body slot wedges were remanufactured. The new wedges were liquid penetrant test with satisfactory results as shown in Appendix C-19.
- All cracks found in copper coils were repaired.
- Aluminum deposits found on rotor forging retaining ring fit areas were removed.
- The “Long Ring Modification” machining was completed on the rotor body.
- After machining, NDE tests were repeated to ensure that all indications found on tooth tops had been removed.
- All diode wheel insulating components were replaced.
- Twelve new diodes were procured for installation into the diode wheel. Electrical test data from the replacement components was satisfactory as shown in Appendix B-11 and B-12.
- New end blocking kits were procured for both ends of the rotor.
- All stator connection wires and associated insulation were replaced.
- All outboard armature banding surfaces were repaired and painted.
- All coil surfaces were hand-cleaned, glass blasted, deburred and straightened. The cleaned coils were placed on storage racks in preparation for rewind.
- New class “F” Nomex slot insulation and Nomex / epoxy glass turn insulation materials were procured.
- New retaining ring insulation liners were procured.

V. ROTOR RE-ASSEMBLY AND TESTING

The rotor rewind was completed in accordance with GMS procedures. Figures 22 and 23 in Appendix A show various stages in the winding process. Hi-Pot and pole balance tests were conducted to verify insulation quality throughout the winding process.

The remainder of the assembly sequence was completed as follows:

- After rewind, the coils were pressed and baked to ensure proper stacking.
- Rotor wedges were installed.

- New end blocking kits were fitted and installed on both the turbine and exciter ends of the rotor.
- End plates were shrunk-fit into the retaining rings and new liners were installed.
- The retaining ring, blower and coupling were installed on the rotor turbine end.
- The exciter and diode wheel were cleaned, painted, reassembled and shrunk onto the rotor shaft.
- The couplings and a set of temporary slip rings required for the balance test were installed on the shaft.
- Electrical components were installed on the diode wheel. See Figures 24 and 25 in Appendix A.
- The diode wheel was cleaned, painted and shrunk onto the shaft.

The rotor was then set up in the lathe for cleanup of journals and seal areas as shown in Appendix A, Figure 26. Final dimensional inspection and electrical test data verified that the rotor was ready for high-speed balance. Dimensional data is included in the High Speed Balance Report (see Appendix E); electrical data is presented in Appendix B-13 and B-14.

VI. HIGH SPEED BALANCE AND TESTING

The rotor was shipped by truck to ReGENco in Milwaukee, Wisconsin, where it arrived and was installed in the spin pit on February 16, 2012. Balance Testing at 3600 rpm and Over-Speed Testing to 3960 rpm and were successfully completed on February 17, 2012. Running tests conducted during spin pit operation included impedance, flux probe waveform data and insulation resistance. These test results are shown in the ReGENco Balance Report, included as Appendix E to this report. The flux probe and running impedance results showed no shorted turns and rotor balance was successfully achieved through criticals and at speed.

Also shown in the Balance Report are final balance weight locations.

Following Balance Test, the temporary slip rings were removed and the bore plug was installed. After this, the Unit 5A rotor was wrapped in a sealed bag and purged with dry nitrogen for shipment back to the Tinker Station on Feb. 18, 2012.

VIII. SUMMARY

Based on inspection data and repair work performed on this unit, the Tinker Unit 5A rotor and exciter are ready for continued operation.

APPENDIX A

TINKER 5A GENERATOR ROTOR 2011 REWIND PHOTOGRAPHS

DESCRIPTION	PAGE
Fig. 1 General Condition of Exciter upon Receipt	1
Fig. 2 Missing Insulating Bushing; Replaced with Electrical Tape	1
Fig. 3 Worn Insulating Components	2
Fig. 4 Diodes Found with Twisted and Deformed Flexible Connectors	2
Fig. 5 Wire Tied around Ends of Flexible Connectors	3
Fig. 6 Properly Manufactured Diode for an EM Diode Wheel	3
Fig. 7 Cracked and Brittle Insulation	4
Fig. 8 Ground Detector Unit as Found	4
Fig. 9 Minor Damage to Outboard Band	5
Fig. 10 Condition of Drive End Bearing	5
Fig. 11 Crack in End Winding Blocking	6
Fig. 12 J-Lead Wedge Found in Poor Condition	6
Fig. 13 Crack Found on Top Turn of Coil 5, Exciter End	7
Fig. 14 Arcing Damage to Slot Wedges	7
Fig. 15 Aluminum on Retaining Ring Fit Area	8
Fig. 16 Tooth-Top Indication at Root of Tooth	8
Fig. 17 Tooth-Top Indication at Root of Tooth	9
Fig. 18 Magnetic Particle Test Indications on EE Retaining Ring	9
Fig. 19 Dye Penetrant Test Indications on Retaining Ring	10
Fig. 20 Tooth Top Cracking	10
Fig. 21 Tooth Top Cracking	11
Fig. 22 Initiation of Rotor Rewind Process	11
Fig. 23 Rotor Rewind in Process	12
Fig. 24 Installing New Diodes on Diode Wheel	12
Fig. 25 Installing Fuses on Diode Wheel	13
Fig. 26 Final Cleanup of Journals and Seal Areas	13

APPENDIX A

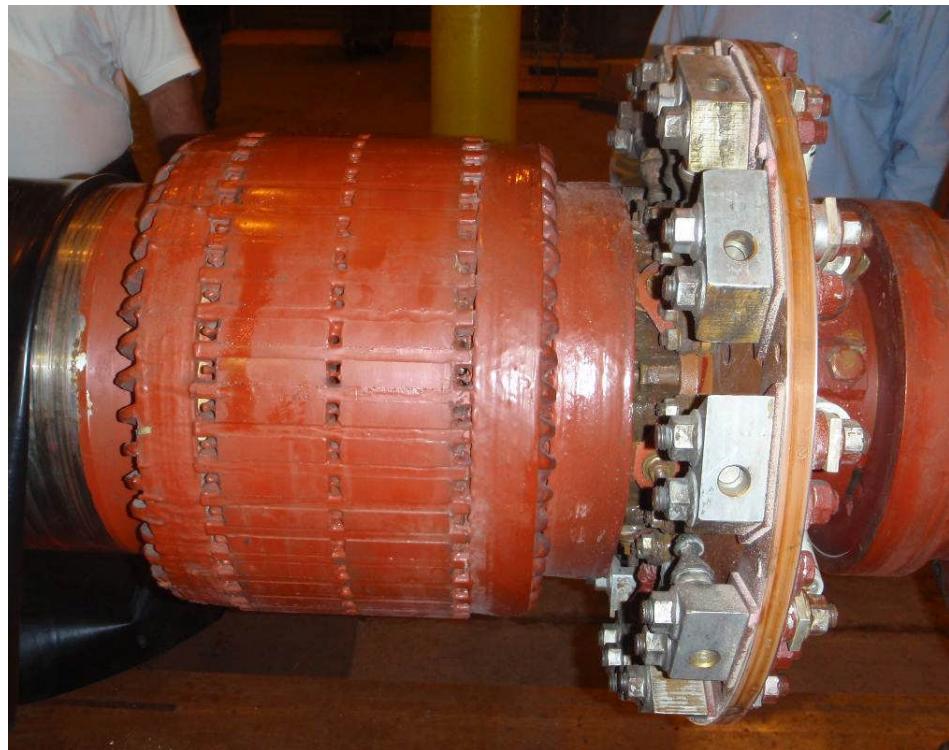


Figure 1: General Condition of Exciter upon Receipt

Figure 2: Missing Insulating Bushing; Replaced with Electrical Tape

APPENDIX A

Figure 3: Worn Insulating Components



Figure 4: Diodes Found with Twisted and Deformed Flexible Connectors

APPENDIX A

Figure 5: Wire Tied around Ends of Flexible Connectors

Figure 6: Properly Manufactured Diode for an EM Diode Wheel

APPENDIX A

Figure 7: Cracked and Brittle Insulation

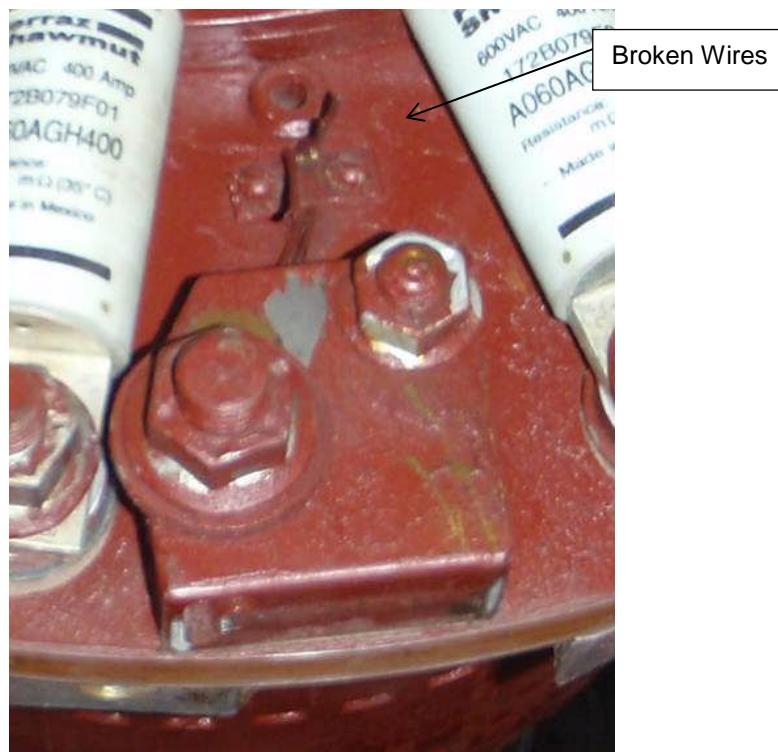


Figure 8: Ground Detector Unit as Found

APPENDIX A

Figure 9: Minor Damage Found on Outboard Band

Figure 10: Condition of Drive End Bearing

APPENDIX A

Figure 11: Cracking in End Winding Blocking

Figure 12: J-Lead Wedge in Poor Condition as found

APPENDIX A

Figure 13: Crack Found on Top Turn of Coil 5, Exciter End

Figure 14: Arcing Damage to Slot Wedges

APPENDIX A

Figure 15: Aluminum on Retaining Ring Fit Area

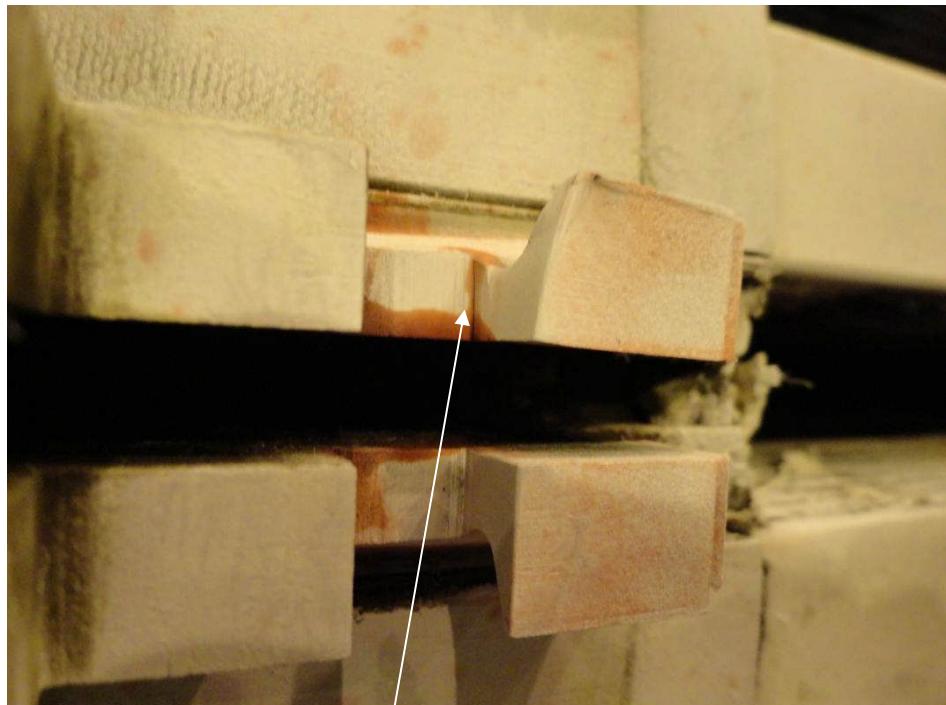


Figure 16: Tooth-Top Indication at Root of Tooth

APPENDIX A

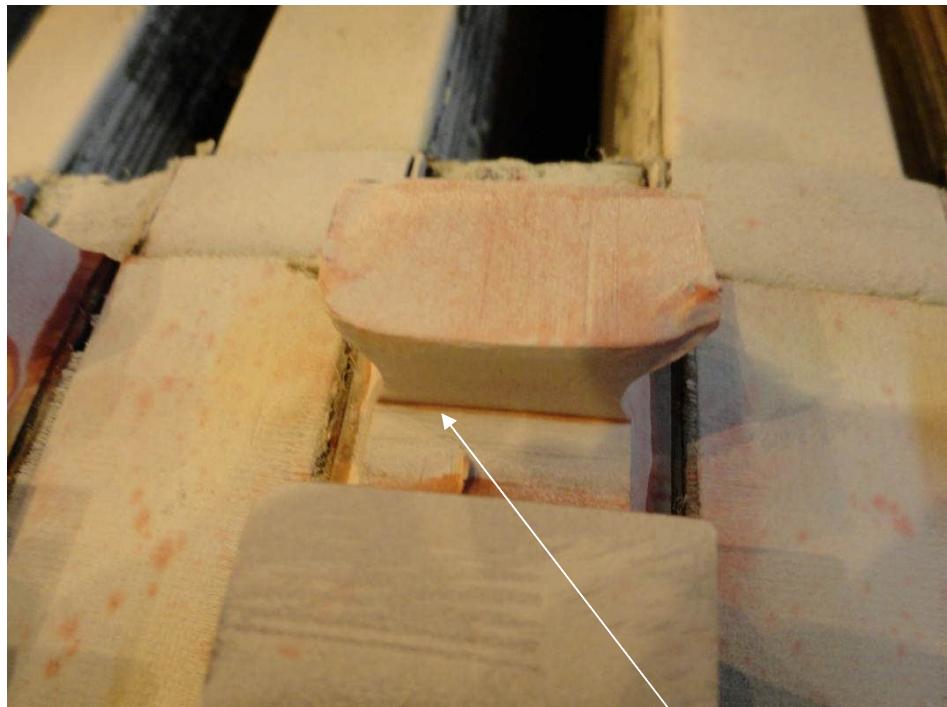


Figure 17: Tooth-Top Indication at Root of Tooth

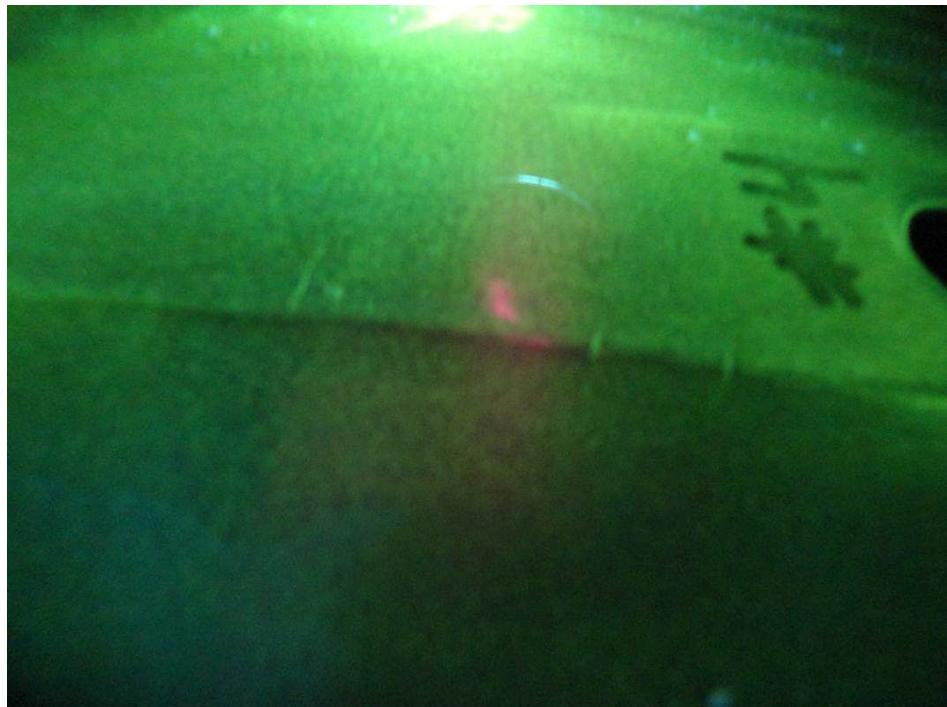


Figure 18: Magnetic Particle Test Indications on EE Retaining Ring

APPENDIX A

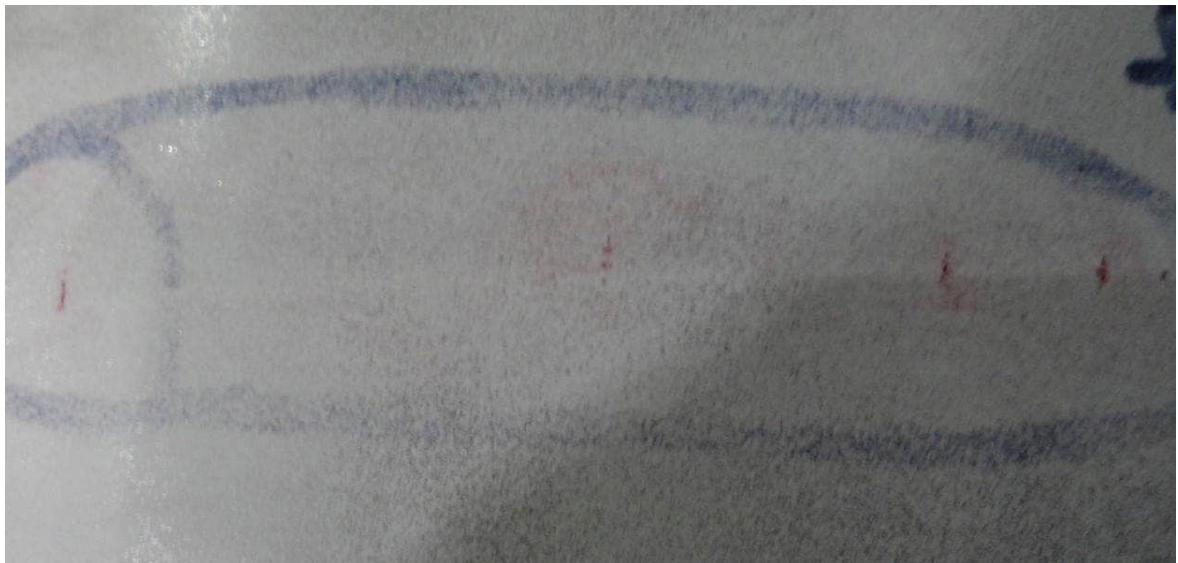


Figure 19: Dye Penetrant Test Indications on EE Retaining Ring

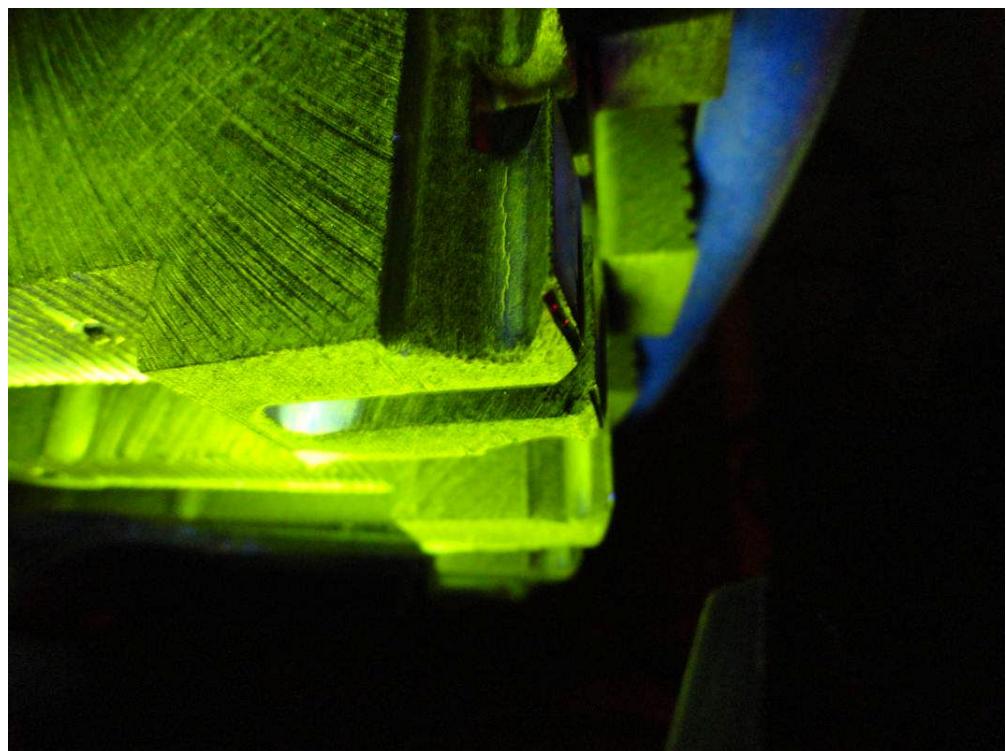


Figure 20: Tooth Top Cracking

APPENDIX A

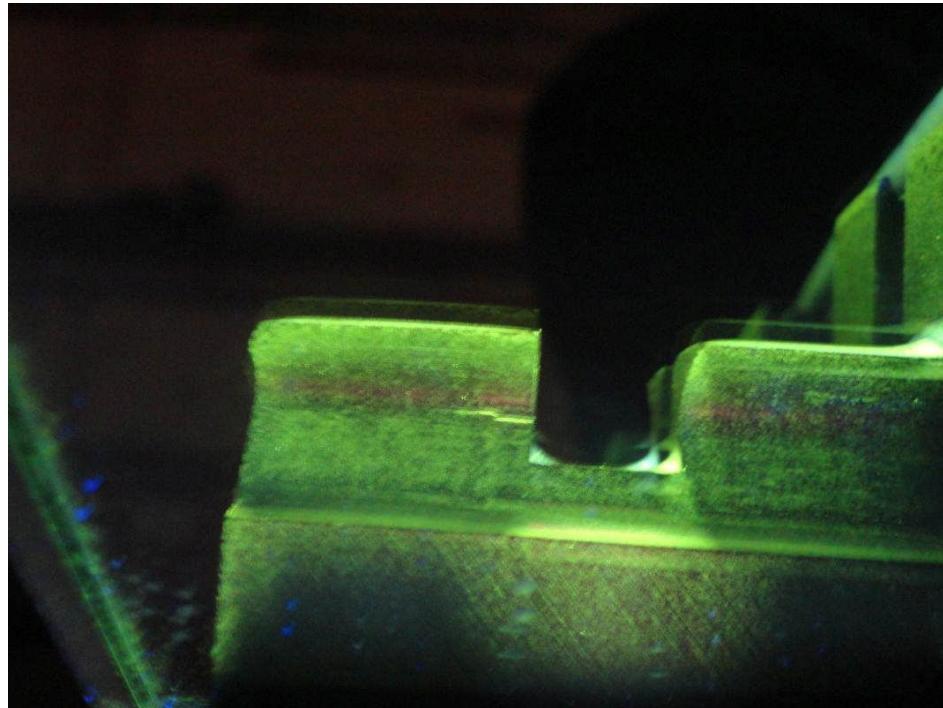


Figure 21: Tooth Top Cracking

Figure 22: Initiation of Rotor Rewind Process

APPENDIX A

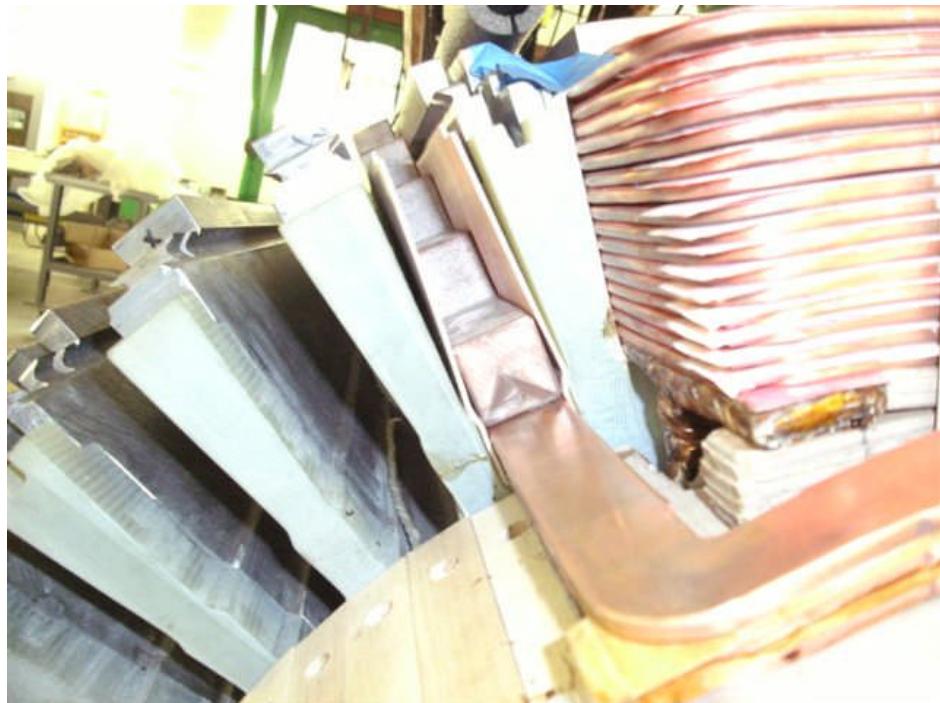


Figure 23: Rotor Rewind in Process

Figure 24. Installing New Diodes on Diode Wheel

APPENDIX A

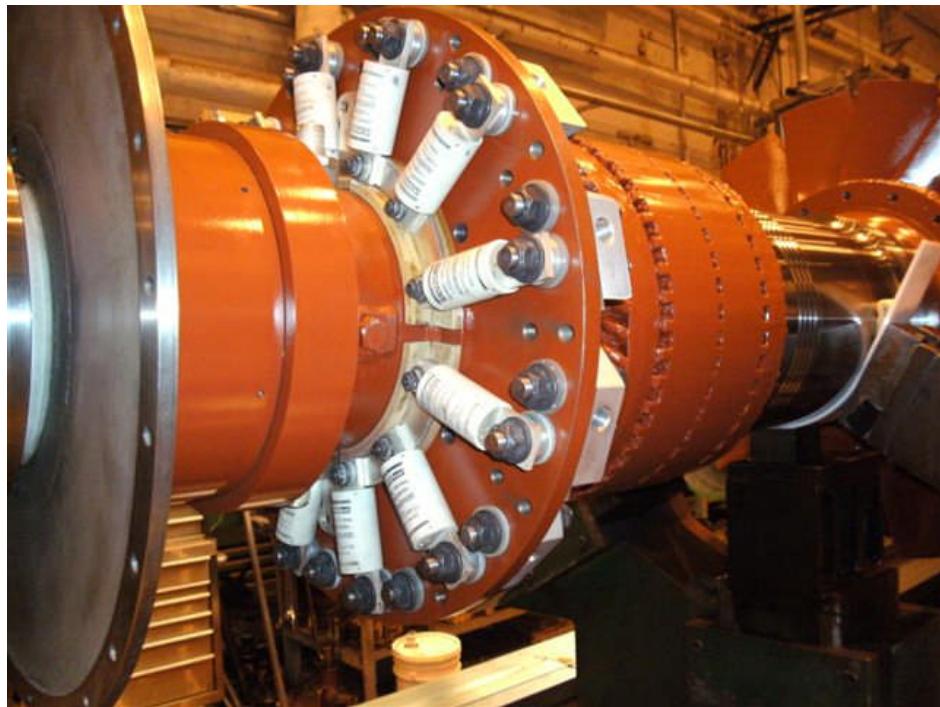


Figure 25. Installing Fuses on Diode Wheel

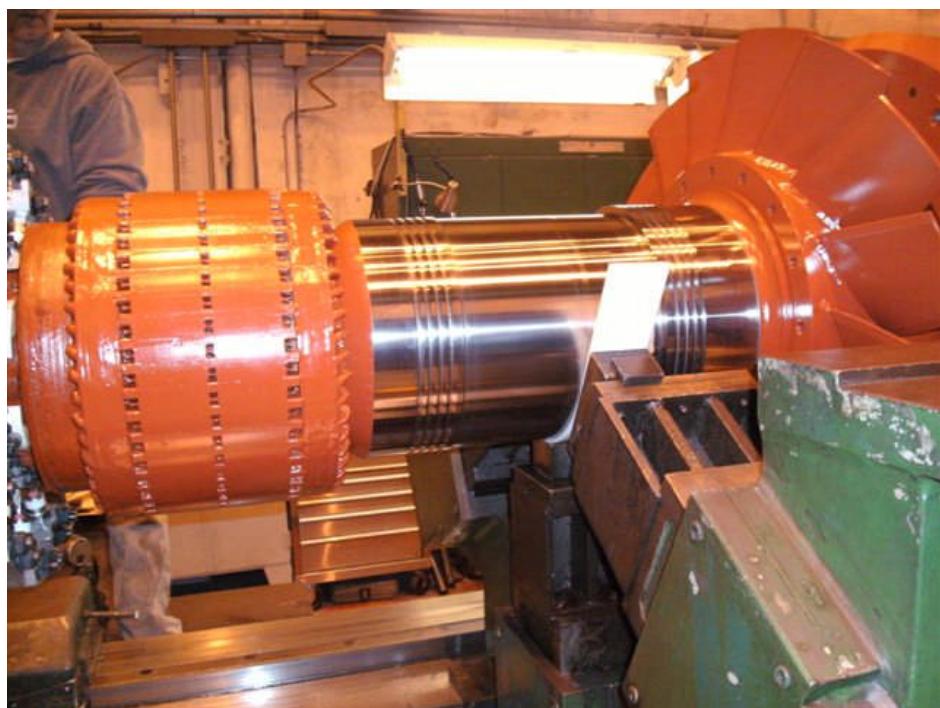


Figure 26. Final Cleanup of Journals and Seal Areas

APPENDIX B

TINKER AFB ROTOR TEST DATA

DESCRIPTION	PAGE
1. Incoming Rotor Resistance Testing	B-1
2. Incoming Rotor Diameters.....	B-2
3. Incoming Rotor Total Indicated Run-Out.....	B-3
4. Incoming Exciter Insulation and Winding Resistances	B-4
5. Incoming Exciter Stator and Field Resistance Tests	B-5
6. Incoming Fuse Resistances	B-6
7. Incoming Diode Hi-Pot Leakage	B-7
8. Incoming Forward and Reverse Diode Resistances	B-8
9. Refurbished Drive End Bearing Dimensions	B-9
10. Refurbished Exciter End Bearing Dimensions	B-10
11. Replacement Diode Hi-Pot Leakage	B-11
12. Replacement Diode Resistances	B-12
13. Final Rotor Insulation and Winding Resistances	B-13
14. Final Exciter Insulation Resistances	B-14

INCOMING ROTOR ELECTRICAL TESTING

Customer: Oklahoma Gas & Electric
Station: Mustang - Tinker AFB
Mfg. & S/N: EM B123A493VA1

Test Date: 10-13-11

Tester: W. Kokocinski

1. ROTOR INSULATION RESISTANCE

Instrument Used: **AYO**
Instrument S/N: **GMS-131**
Calibration Due: **9-20-12**

Excitation Voltage: **V_{DC}**
Test Voltage: **500 V_{DC}**
Acceptance Criteria: **50 MΩ , PI > 2**

TIME	MEGOHMS
15 Sec.	0
30 Sec.	0
45 Sec.	
1 Min.	
1½ Min.	
2 Min.	
2½ Min.	
3 Min.	

TIME	MEGOHMS
4 Min.	
5 Min.	
6 Min.	
7 Min.	
8 Min.	
9 Min.	
10 Min.	
PI = R _{10 Min.} / R _{1 Min.} =	

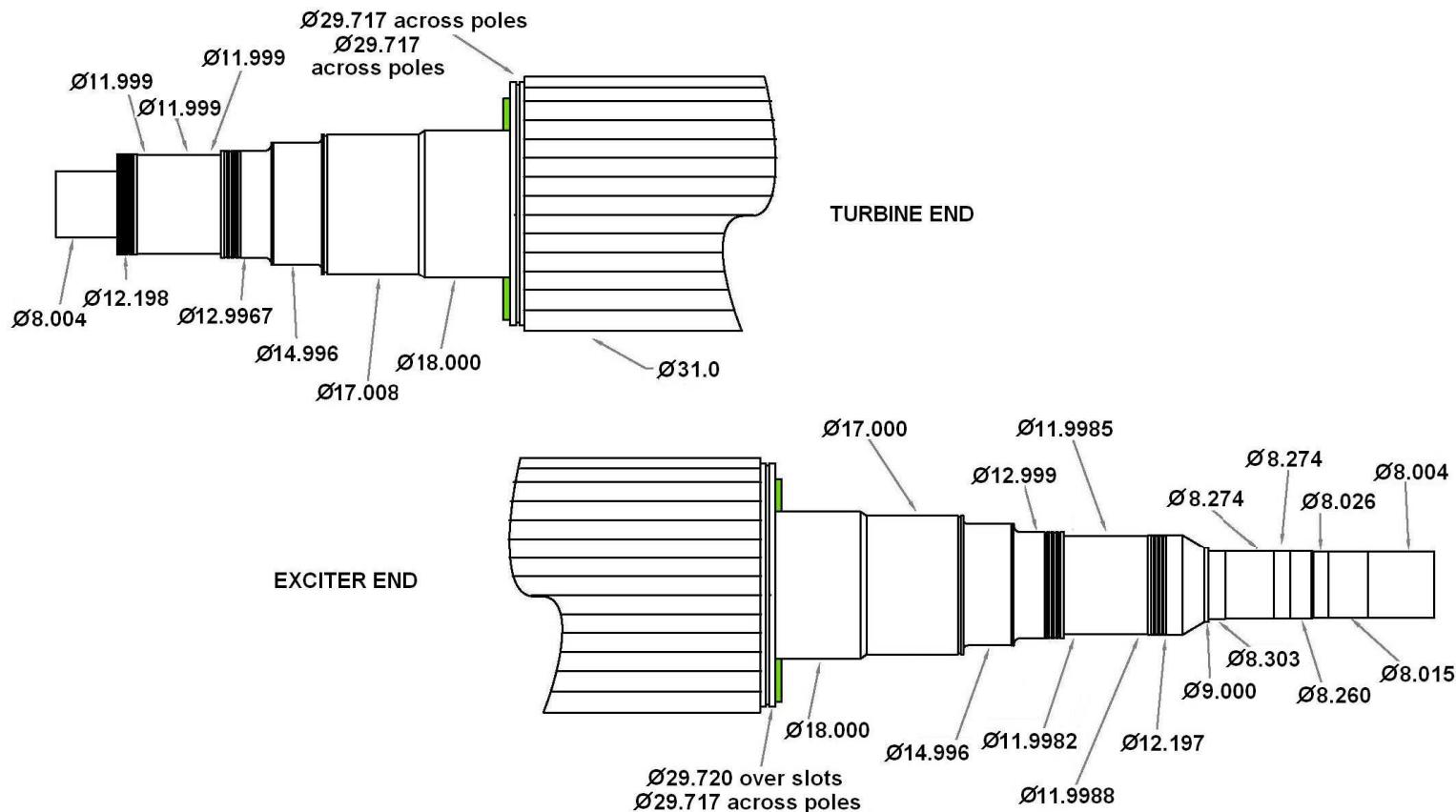
Note: Rotor, as received has a ground wall short and can't be tested using a Megger.

2. D.C. ROTOR WINDING RESISTANCE

MEASURED (R _m , Ohms)	CORRECTED TO (R _{25°C} , Ohms)	PREVIOUS (Ohms)
.3912	0.3942	0.5462

Micro-ohmmeter: **DLRO**
Instrument No.: **GMS-082**
Calibration Due: **2-3-12**
Temperature: **23 °C**

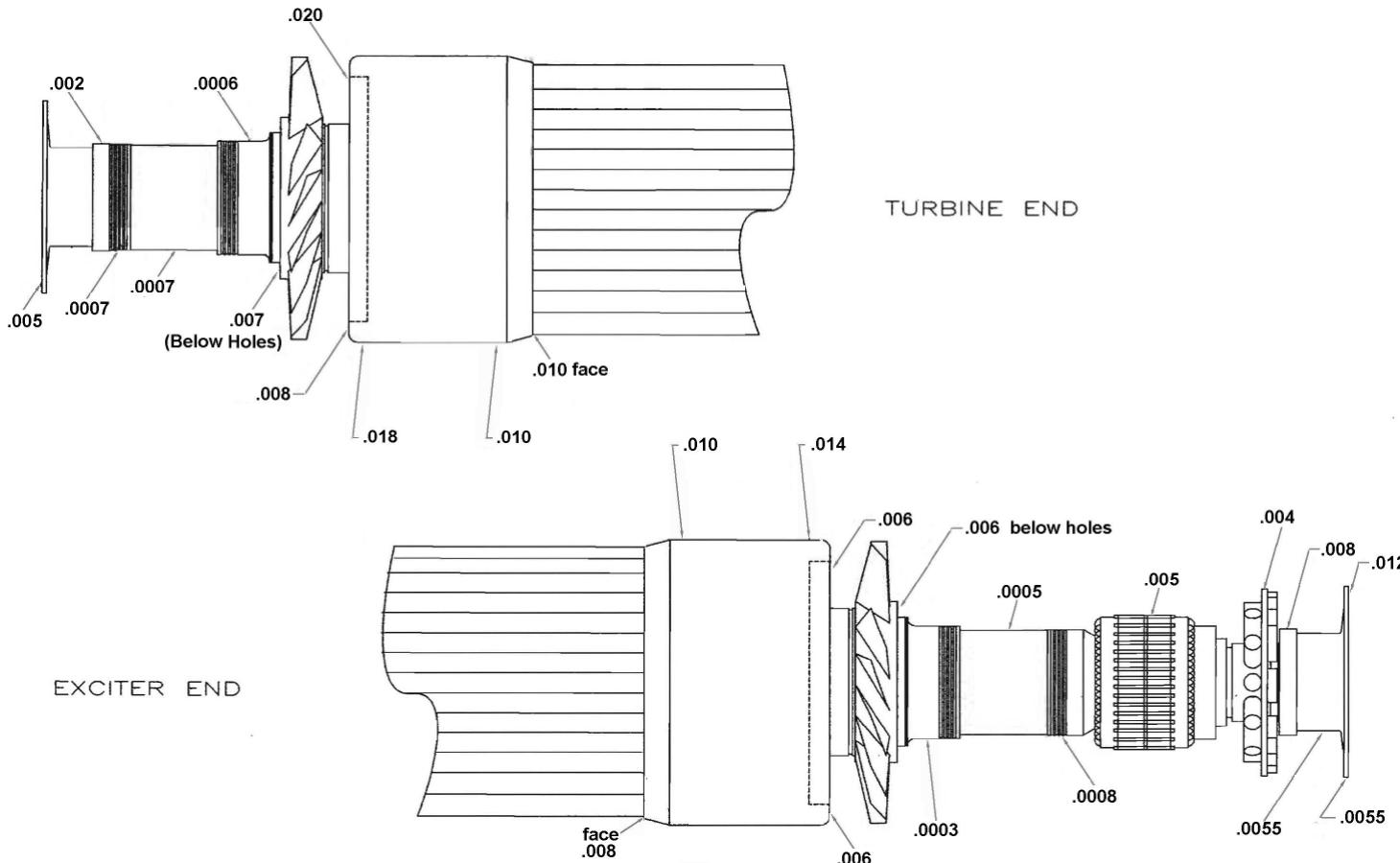
$$*R_{25^{\circ}C} = R_m \left[\frac{259.5}{234.5 + T} \right] \quad **R_{75^{\circ}C} = R_m \left[\frac{309.5}{234.5 + T} \right]$$


R_{25°C} = Winding Resistance Corrected to 25°C; R_m = Measured Winding Resistance
R_{75°C} = Winding Resistance Corrected to 75°C; T = Temperature of Winding, °C

ROTOR SURFACE DIAMETERS (Incoming)

Customer: Oklahoma Gas & Electric
Station/Unit: Mustang - Tinker AFB
Mfg. & S/N: EM B123A493VA1

Test Date: 10/14/11
Machinist: Mark Benson
Shop Order: 11G779



ROTOR SHAFT TOTAL INDICATED RUN-OUT (Incoming)

Customer: Oklahoma Gas & Electric
Station/Unit: Mustang - Tinker AFB
Mfg. & S/N: EM B123A493VA1

Test Date: 10/13/11
Machinist: Mark Benson
Shop Order: 11G779

EXCITER INCOMING ELECTRICAL TESTS INSULATION & WINDING RESISTANCES

Customer: Oklahoma Gas & Electric
Station: Mustang - Tinker AFB
Mfg. & S/N: EM B123A493VA1

Megger Used: AVO Megger
Megger S/N: GMS-131
Cal. Due Date: 9-20-2012

1. INSULATION RESISTANCE TESTS

Test	Test Voltage	Resistance (Megohms)		Tester	Date
		Acceptance	Measured		
Exciter Rotor Winding	500 V _{DC} , 1 min.	R>1	20,000	A. Kiefer	10-18-11
Diode Wheel-to-Wheel	500 V _{DC} , 1 min.	R>1		N/A – Single Wheel	
IB Diode Wheel-to-Shaft	500 V _{DC} , 1 min.	R>1		N/A – Single Wheel	
OB Diode Wheel-to-Shaft	500 V _{DC} , 1 min.	R>1			
Heat Sinks-to-Diode Wheel (disconnect fuses)		R>.5			
Exciter Stator	500 V _{DC} , 1 min.	R>1	20,000	A. Kiefer	10-18-11
PMG Stator	500 V _{DC} , 1 min.	R>1			
Bearing Pedestal	500 V _{DC} , 1 min.	R>1			

Notes: All values satisfactory.

2. EXCITER WINDING RESISTANCES

Tester: A. Kiefer
Test Date: 10-18-2011

MicroOhmmeter: Biddle
Ohmmeter S/N: GMS-082
Cal. Due Date: 2-3-2012

Phase	Resistance	Deviation from Average	
		Milliohms	Milliohms
B-B	10.14	-0.010	-0.1
B-C	10.16	0.010	0.1
C-A	10.15	0.000	0.0
Average	10.150		

Notes: All test results satisfactory.

EXCITER INCOMING ELECTRICAL TESTS STATOR & PMG RESISTANCE, POLE DROP

Customer: Oklahoma Gas & Electric
Station: Mustang - Tinker AFB
Mfg. & S/N: EM B123A493VA1

MicroOhmeter: Biddle
Instrument S/N: GMS-082
Cal. Due Date: 2-3-2012

1. EXCITER STATOR RESISTANCE Tester: A. Kiefer Date: 10-18-11

	Temp. (°C)	Measured (R _m , Ohms)	Corrected to 25°C (R _{25°C} , Ohms)	Corrected to 75°C (R _{75°C} , Ohms)
a. Field Resistance:	20	2.429	2.477	2.954
b. Field Limiting Resistor 1:		N/A		
c. Field Limiting Resistor 2:		N/A		

2. PMG STATOR RESISTANCE Tester: _____ Date: _____

Phase	Measured (R _m , Ohms)	Corrected to (R _{25°C} , Ohms)	Corrected to (R _{75°C} , Ohms)	DLRO Used: _____
T10-20				DLRO S/N: _____
T20-30				Cal. Due Date: _____
T30-10				Temperature _____
Average				

3. FIELD COIL POLE DROP TEST Tester: A. Kiefer Date: 10-18-11

Pole	Resistance (mΩ)
1	303.6
2	304.7
3	303.1
4	304.6
5	302.8
6	302.9
7	301.5
8	300.3
Avg.	302.9

Total Applied Voltage: 120.5 V_{AC}
Measured Current: 1.3 Amps
Overall Impedance: 92.7 Ohms
Pole Drop Acceptability Limit: $\pm 5\%$ of Avg.
Pole Drop High Limit: 318.0 mΩ
Pole Drop Low Limit: 287.8 mΩ

4. REMARKS

(1) All measured values within specification limits.
(2) PMG stator not shipped with rotor.

EXCITER INCOMING ELECTRICAL TESTS

DIODE WHEEL FUSE RESISTANCES

Customer: Oklahoma Gas & Electric
Station: Mustang - Tinker AFB
Mfg. & S/N: EM B123A493VA1
Inspector: A. Kiefer
Date: 10-18-11

Instrument: Biddle DLRO
Instr. S/N: GMS-082
Cal. Due: 2-3-2012
Fuse Dwg: _____
Fuse Style: A060AGH400
Specification: 264 µohms (max.) See (2)

Ambient Temp. 20 °C

OUTBOARD (PMG) SIDE			INBOARD (COUPLING) SIDE		
Fuse No.	Resistance (microohms)		Fuse No.	Resistance (microohms)	
	As Read, R _m	Corrected to 25°C		As Read, R _m	Corrected to 25°C
1	257	262	1		
2	249	254	2		
3	251	256	3		
4	246	251	4		
5	248	253	5		
6	245	250	6		
7	252	257	7		
8	243	248	8		
9	244	249	9		
10	259	264	10		
11	251	256	11		
12	247	252	12		
13			13		
14			14		
15			15		
16			16		
17			17		
18			18		
19			19		
20			20		
21			21		
22			22		
23			23		
24			24		
25			25		
26			26		
27			27		
28			28		
29			29		
30			30		

Note: All fuses resistances are satisfactory.

EXCITER ELECTRICAL TESTS DIODE HI-POT LEAKAGE (PIV)

Customer: Oklahoma Gas & Electric
Station: Mustang - Tinker AFB
Mfg. & S/N: EM B123A493VA1
Inspector: A. Kiefer
Date: 10-18-11

Instrument: Basler Tester
Instr. S/N: GMS-091
Cal. Due Date:
Diode P/N
Test Voltage: 1000 V_{DC}
Specification: 45 mA maximum

As Received
 In-Process Inspection
 Final Inspection

OUTBOARD (PMG SIDE)				INBOARD (GENERATOR SIDE)			
DIODE P/N		COLOR		DIODE P/N		COLOR	
Diode No.	Leakage Current (milliamps)	Diode No.	Leakage Current (milliamps)	Diode No.	Leakage Current (milliamps)	Diode No.	Leakage Current (milliamps)
1	.18	25		1		25	
2	.18	26		2		26	
3	.19	27		3		27	
4	.18	28		4		28	
5	.18	29		5		29	
6	.19	30		6		30	
7	.19	31		7		31	
8	.19	32		8		32	
9	.19	33		9		33	
10	.18	34		10		34	
11	.18	35		11		35	
12	.18	36		12		36	
13		37		13		37	
14		38		14		38	
15		39		15		39	
16		40		16		40	
17		41		17		41	
18		42		18		42	
19		43		19		43	
20		44		20		44	
21		45		21		45	
22		46		22		46	
23		47		23		47	
24		48		24		48	

Notes: All electrical values acceptable. **Mechanical condition of all diodes unacceptable.**

EXCITER ELECTRICAL TESTS

FORWARD AND REVERSE DIODE RESISTANCES

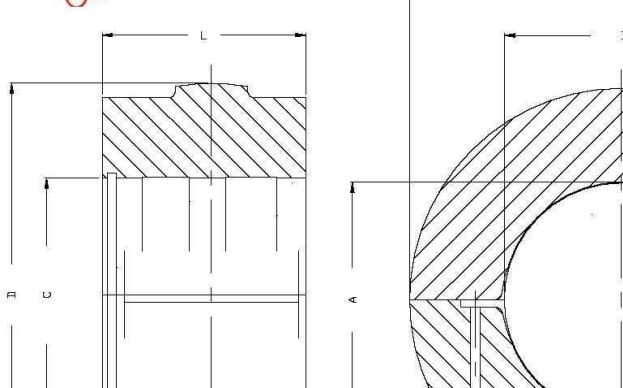
Customer: Oklahoma Gas & Electric
Station: Mustang - Tinker AFB
Mfg. & S/N: EM B123A493VA1
Inspector: A. Kiefer
Date: 10-18-11

Instrument: Simpson
Instr. S/N: GMS-114
Cal. Due Date: 11-30-11
Forward Spec: 5 – 10 ohms
Reverse Spec: 30 kilohms, min.

As Received (after Hi Pot)
 In-Process Inspection
 Final Inspection

OUTBOARD (PMG SIDE)						INBOARD (GENERATOR SIDE)					
DIODE P/N			COLOR			DIODE P/N			COLOR		
No.	Forward (ohms)	Reverse (kohms)	No.	Forward (ohms)	Reverse (kohms)	No.	Forward (ohms)	Reverse (kohms)	No.	Forward (ohms)	Reverse (kohms)
1	5.5	∞	25			1			25		
2	5.5	∞	26			2			26		
3	5.5	∞	27			3			27		
4	5.5	∞	28			4			28		
5	5.5	∞	29			5			29		
6	5.5	∞	30			6			30		
7	6.0	∞	31			7			31		
8	5.5	∞	32			8			32		
9	6.0	∞	33			9			33		
10	6.0	∞	34			10			34		
11	6.0	∞	35			11			35		
12	6.0	∞	36			12			36		
13			37			13			37		
14			38			14			38		
15			39			15			39		
16		Infinity	40			16			40		
17		Infinity	41			17			41		
18		Infinity	42			18			42		
19		Infinity	43			19			43		
20		Infinity	44			20			44		
21		Infinity	45			21			45		
22		Infinity	46			22			46		
23		Infinity	47			23			47		
24		Infinity	48			24			48		

Notes: All electrical values acceptable. **Mechanical condition of all diodes unacceptable.**



INSPECTION REPORT

REFURBISHED DE JOURNAL BEARING

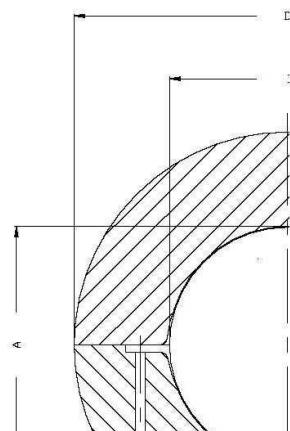
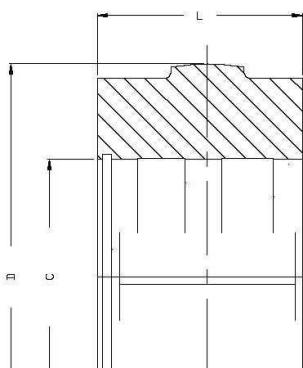
Renewal Parts Maintenance

Inspection Report
Journal Bearing
RPM Job# 0502489-1-1

Customer: GMS International			Plant/Unit:			
OEM/Design: Elliptical			Comments:			
Work Scope: Centrifugal Cast Repair						
P/N DE	As Received			As Shipped		
	Date: 11/9/11		Date: 1/26/12			
Inside Diameter	Vert	Horz	Horz	Vert	Horz	Horz
	Inboard	12.015	12.030	12.033	12.014	12.029
	Midboard					
Seal Diameter	Outboard	12.016	12.0315	12.033	12.014	12.029
	Inboard	12.0145	12.029	12.031	12.014	12.029
Deflector	Outboard	12.016	12.030	12.050	12.014	12.0285
	Inboard	12.231	12.247	12.250		A S
Outside Diameter	Outboard	13.032	13.053	13.052	R E	C E I
	Inboard	15.600	15.603	15.600	15.600	15.598
	Midboard					
Length	Babbitt: 8.593 OAL: 11.790			Babbitt: 8.587 OAL: 11.792		
	(2) Not Acceptable			(2) Refit		
Joints		In .000	Out .005	Contact 65%	In .000	Out .005 Contact 65%
Babbitt Bond		N/A			UT/PT>95% Adhesion	

"100% Customer Satisfaction is always our Goal."

If you have any questions concerning this report or any of our services, please call us.
 4485 Glenbrook Road • Willoughby, Ohio 44094 • 800.446.4776 • fax 440.946.5524

INSPECTION REPORT

REFURBISHED EE JOURNAL BEARING

Renewal Parts Maintenance

Inspection Report
Journal Bearing
RPM Job# 0502489-2-1

Customer: GMS International		Plant/Unit:					
OEM/Design: Elliptical		Comments:					
Work Scope: Centrifugal Cast Repair							
P/N EE		As Received			As Shipped		
		Date: 11/9/11			Date: 1/26/12		
Inside Diameter	Inboard	Vert	Horz	Horz	Vert	Horz	Horz
	Midboard						
	Outboard	12.014	12.037	12.039	12.015	12.030	12.030
Seal Diameter	Inboard	12.0165	12.036	12.036	12.015	12.030	12.030
	Outboard	12.013	12.037	12.039	12.015	12.030	12.030
Bolt On	Inboard	12.236	12.255	12.256	12.336	12.255	12.256
Deflector	Outboard	13.030	13.054	13.052	13.030	13.054	13.052
Outside Diameter	Inboard	15.5985	15.602	15.599	15.599	15.598	15.599
	Midboard						
	Outboard	15.599	15.601	15.598	15.599	15.599	15.598
Length		Babbitt: 8.590 OAL: 11.800			Babbitt: 8.500 OAL: 11.788		
Dowels		(2) Acceptable			(2) Refit		
Joints		In .000 Out .003 Contact 70%			In .000 Out .000 Contact 75%		
Babbitt Bond		N/A			UT/PT>95% Adhesion		

"100% Customer Satisfaction is always our Goal."

If you have any questions concerning this report or any of our services, please call us.
 4485 Glenbrook Road • Willoughby, Ohio 44094 • 800.446.4776 • fax 440.946.5524

EXCITER FINAL ELECTRICAL TESTS REPLACEMENT DIODE HI-POT LEAKAGE (PIV)

Customer: Oklahoma Gas & Electric
Station: Mustang - Tinker AFB
Mfg. & S/N: EM B123A493VA1
Inspector: Walt Kokocinski
Date: 1-13-12

Instrument: Basler Tester
Instr. S/N: GMS-091
Cal. Due Date:
Diode P/N:
Test Voltage: 1000 V_{DC}
Specification: 45 mA maximum

As Received
 In-Process Inspection
 Final Inspection

OUTBOARD (PMG SIDE)		INBOARD (GENERATOR SIDE)	
DIODE P/N		COLOR	
Diode No.	Leakage Current (milliamps)	Diode No.	Leakage Current (milliamps)
1	.22	25	
2	.22	26	
3	.22	27	
4	.22	28	
5	.22	29	
6	.22	30	
7	.22	31	
8	.22	32	
9	.22	33	
10	.22	34	
11	.22	35	
12	.22	36	
13		37	
14		38	
15		39	
16		40	
17		41	
18		42	
19		43	
20		44	
21		45	
22		46	
23		47	
24		48	

Notes: All electrical values acceptable.

EXCITER ELECTRICAL TESTS REPLACEMENT DIODE RESISTANCES

Customer: Oklahoma Gas & Electric
Station: Mustang - Tinker AFB
Mfg. & S/N: EM B123A493VA1
Inspector: Walt Kokocinski
Date: 1-13-12

Instrument: Simpson
Instr. S/N: GMS-114
Cal. Due Date: 11-15-12
Forward Spec: 5 – 10 ohms
Reverse Spec: 30 kilohms, min.

As Received (after Hi Pot)
 In-Process Inspection
 Final Inspection

OUTBOARD (PMG SIDE)			INBOARD (GENERATOR SIDE)					
DIODE P/N		COLOR		DIODE P/N		COLOR		
No.	Forward (ohms)	Reverse (kohms)	No.	Forward (ohms)	Reverse (kohms)	No.	Forward (ohms)	Reverse (kohms)
1	7.6	∞	25			1	25	
2	7.6	∞	26			2	26	
3	7.6	∞	27			3	27	
4	7.6	∞	28			4	28	
5	7.6	∞	29			5	29	
6	8.0	∞	30			6	30	
7	7.6	∞	31			7	31	
8	7.2	∞	32			8	32	
9	7.4	∞	33			9	33	
10	7.5	∞	34			10	34	
11	7.4	∞	35			11	35	
12	7.4	∞	36			12	36	
13			37			13	37	
14			38			14	38	
15			39			15	39	
16	Infinity	40				16	40	
17	Infinity	41				17	41	
18	Infinity	42				18	42	
19	Infinity	43				19	43	
20	Infinity	44				20	44	
21	Infinity	45				21	45	
22	Infinity	46				22	46	
23	Infinity	47				23	47	
24	Infinity	48				24	48	

Notes: All electrical values acceptable.

FINAL ROTOR ELECTRICAL TESTING

Customer: Oklahoma Gas & Electric
Station: Mustang - Tinker AFB
Mfg. & S/N: EM B123A493VA1

Test Date: 2-15-12
Tester: W. Kokocinski

1. ROTOR INSULATION RESISTANCE

Instrument Used: **AYO**
Instrument S/N: **GMS-131**
Calibration Due: **9-20-12**

Excitation Voltage: V_{DC}
Test Voltage: **500** V_{DC}
Acceptance Criteria: **50 MΩ , PI > 2**

TIME	MEGOHMS
15 Sec.	1,500
30 Sec.	2,500
45 Sec.	3,500
1 Min.	4,500
1½ Min.	6,000
2 Min.	6,000
2½ Min.	7,000
3 Min.	7,000

TIME	MEGOHMS
4 Min.	8,000
5 Min.	8,000
6 Min.	9,000
7 Min.	10,000
8 Min.	10,000
9 Min.	11,000
10 Min.	11,000
PI = $R_{10 \text{ Min.}} / R_{1 \text{ Min.}}$	2.4

Note: All values acceptable.

2. D.C. ROTOR WINDING RESISTANCE

MEASURED (R_m , Ohms)	CORRECTED TO ($R_{25^\circ C}$, Ohms)	PREVIOUS (Ohms)
.393	0.3945	0.5466

Micro-ohmmeter: **DLRO**
Instrument No.: **GMS-082**
Calibration Due: **9-23-12**
Temperature: **24** $^\circ C$

$$*R_{25^\circ C} = R_m \left[\frac{259.5}{234.5 + T} \right] \quad **R_{75^\circ C} = R_m \left[\frac{309.5}{234.5 + T} \right]$$

$R_{25^\circ C}$ = Winding Resistance Corrected to $25^\circ C$; R_m = Measured Winding Resistance
 $R_{75^\circ C}$ = Winding Resistance Corrected to $75^\circ C$; T = Temperature of Winding, $^\circ C$

Note: Q-Meter data verified that the rotor was free of turn-to-turn shorts.

EXCITER FINAL ELECTRICAL TESTS INSULATION & WINDING RESISTANCES

Customer: Oklahoma Gas & Electric
Station: Mustang - Tinker AFB
Mfg. & S/N: EM B123A493VA1

Megger Used: _____
Megger S/N: _____
Cal. Due Date: _____

1. INSULATION RESISTANCE TESTS

Test	Test Voltage	Resistance (Megohms)		Tester	Date
		Acceptance	Measured		
Exciter Rotor Winding	500 V _{DC} , 1 min.	R>1	20,000		11-8-11
Diode Wheel-to-Wheel	500 V _{DC} , 1 min.	R>1		N/A Single Wheel	
IB Diode Wheel-to-Shaft	500 V _{DC} , 1 min.	R>1		N/A Single Wheel	
OB Diode Wheel-to-Shaft	500 V _{DC} , 1 min.	R>1			
Heat Sinks-to-Diode Wheel (disconnect fuses)		R>.5			
Exciter Stator	500 V _{DC} , 1 min.	R>1	20,000	A. Kiefer	11-8-11
PMG Stator	500 V _{DC} , 1 min.	R>1			
Bearing Pedestal	500 V _{DC} , 1 min.	R>1			

Notes:

2. EXCITER WINDING RESISTANCES

Tester: Walt Kokocinski
Test Date: _____

MicroOhmmeter: _____
Ohmmeter S/N: _____
Cal. Due Date: _____

Phase	Resistance	Deviation from Average	
	Milliohms	Milliohms	Pct.
B-B			
B-C			
C-A			
Average			

Notes:

APPENDIX C

Oklahoma Gas & Electric / TINKER AFB

NON DESTRUCTIVE EXAMINATION TEST RESULTS

<u>DESCRIPTION</u>	<u>PAGE</u>
A. J-Lead Wedges Liquid Penetrant Inspection	C-1, C-2
B. Body Wedges Liquid Penetrant Inspection.....	C-3, C-4
C. Shafts, Journals & Coupling Magnetic Particle Inspection	C-5
D. Rotor Body Magnetic Particle Inspection	C-6 to C-8
E. Retaining Ring Magnetic Particle Inspection	C-9 to C-11
F. Retaining Ring Hardness Tests	C-12 to C-14
G. Blower Fans Magnetic Particle Inspection	C-15
H. J-Lead Ultrasonic Inspection	C-16
I. Replacement J-Lead Wedge Liquid Penetrant Inspection.....	C-17
J. Replacement Retaining Ring Magnetic Particle Inspection	C-18
K. Replacement Body Wedges Liquid Penetrant Inspection.....	C-19

LIQUID PENETRANT NDE INSPECTION

J-LEAD WEDGES

Customer: Oklahoma Gas & Electric Date: 10/25/2011
Station: Tinker AFB Job No: 11G779
Mfg. & S/N: EM B123A493VA1 Heat Number: N/A
Procedure: E-165-02 Heat Code: N/A
Specification: N/A Quantity: 14 total
Scope: Liquid Penetrant Inspection of J-Lead Wedges

TEST PARAMETERS

Fluorescent

Visible

Manufacturer: _____
Penetrant Remover Developer
Type: N/A N/A N/A
Batch: N/A N/A N/A
Time: N/A N/A N/A

Manufacturer: _____
Penetrant Remover Developer
Type: SKL-SP1 SKC-S SKD-S2
Batch: 10E03K 10A01K 10E10K
Time: 20 Minutes N/A N/A

Ultraviolet Light Data:

U.V. Light Mfg.: N/A Model No.: N/A
Serial No.: N/A Intensity @ 15": N/A

Ultraviolet Light Meter Data:

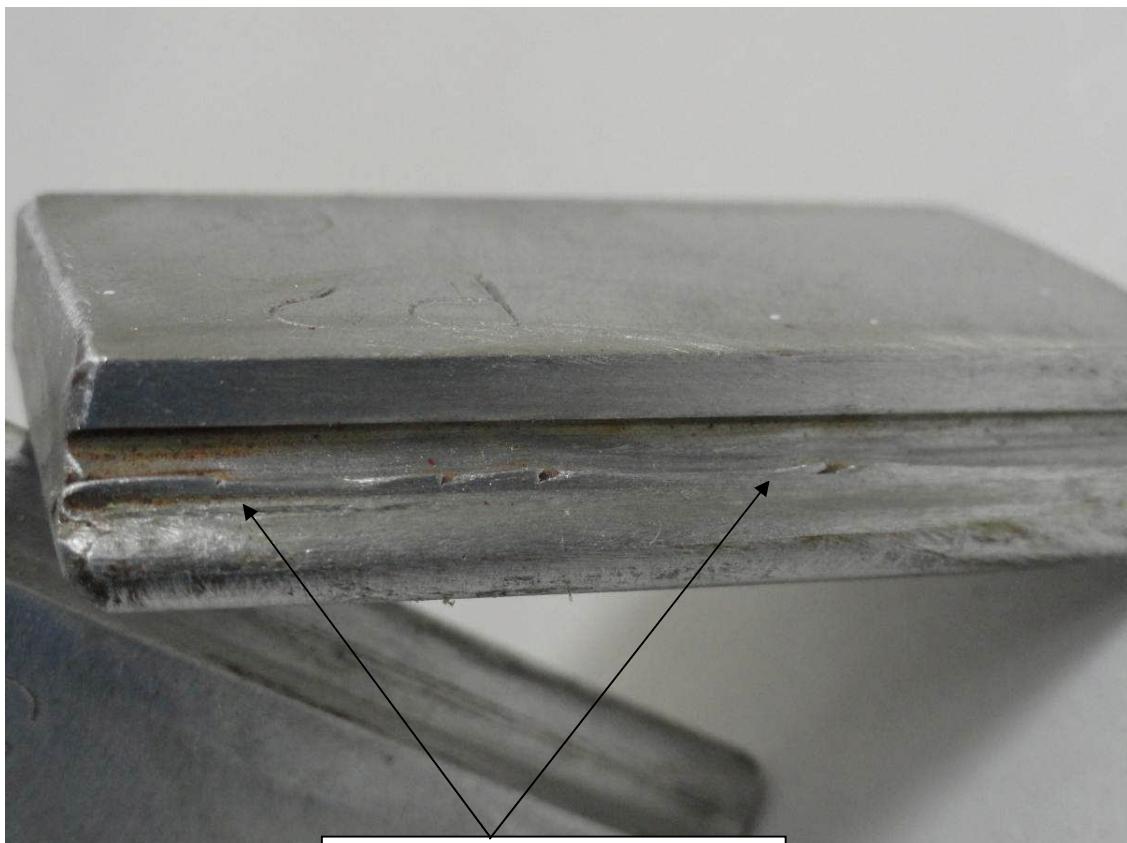
Meter Mfg.: N/A Model No.: N/A
Serial No.: N/A Calibration Due: N/A

INSPECTION RESULTS

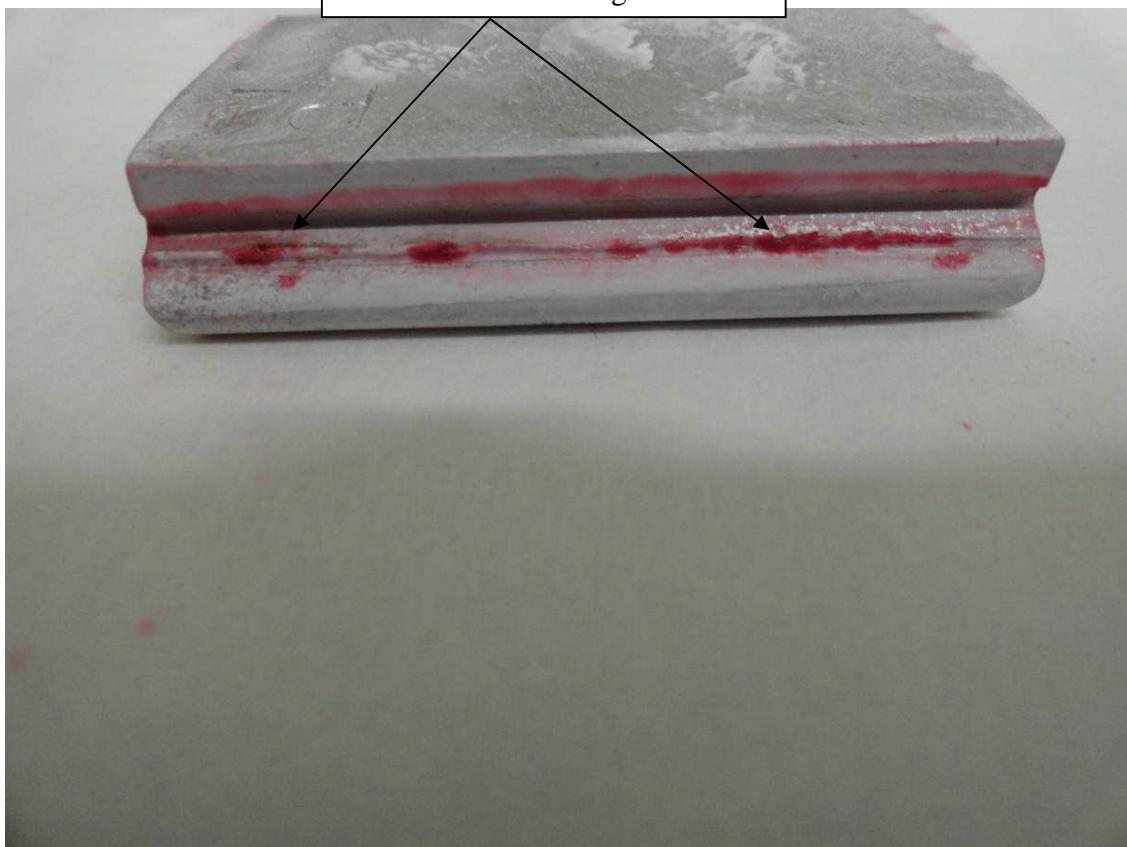
Acceptable: _____ Unacceptable: _____ Yes _____

Remarks: 1. Mechanical damage found on wedge lands prevented meaningful results from a Penetrant Inspection. See Page C-2.

Dennis Lavelle
Technician (Print)


Assistant (Print)

Technician (Signature)


LEVEL II III

Assistant
(Signature)

LEVEL I II

Mechanical Damage Found on
the Lands of All Wedges

LIQUID PENETRANT NDE INSPECTION ROTOR BODY WEDGES

Customer: Oklahoma Gas & Electric Date: 10/29/2011
Station: Tinker AFB Job No: 11G779
Mfg. & S/N: EM B123A493VA1 Heat Number: N/A
Procedure: E-165-02 Heat Code: N/A
Specification: N/A Quantity: Sample of 20
Scope: Liquid Penetrant Inspection of Rotor Body Wedges

TEST PARAMETERS

Fluorescent

Visible

Manufacturer: _____
Penetrant Remover Developer
Type: N/A N/A N/A
Batch: N/A N/A N/A
Time: N/A N/A N/A

Manufacturer: _____
Penetrant Remover Developer
Type: SKL-SP1 SKC-S SKD-S2
Batch: 10E03K 10A01K 10E10K
Time: 20 Minutes N/A N/A

Ultraviolet Light Data:

U.V. Light Mfg.: N/A Model No.: N/A
Serial No.: N/A Intensity @ 15": N/A

Ultraviolet Light Meter Data:

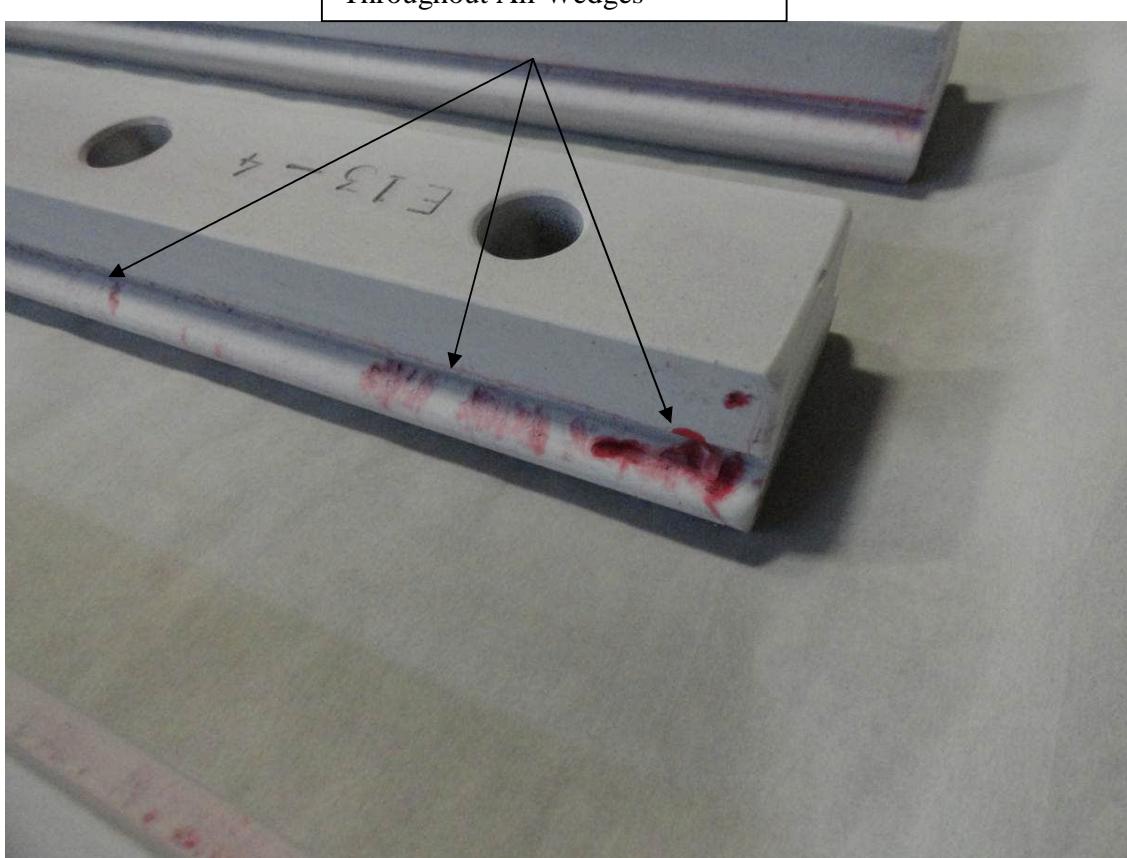
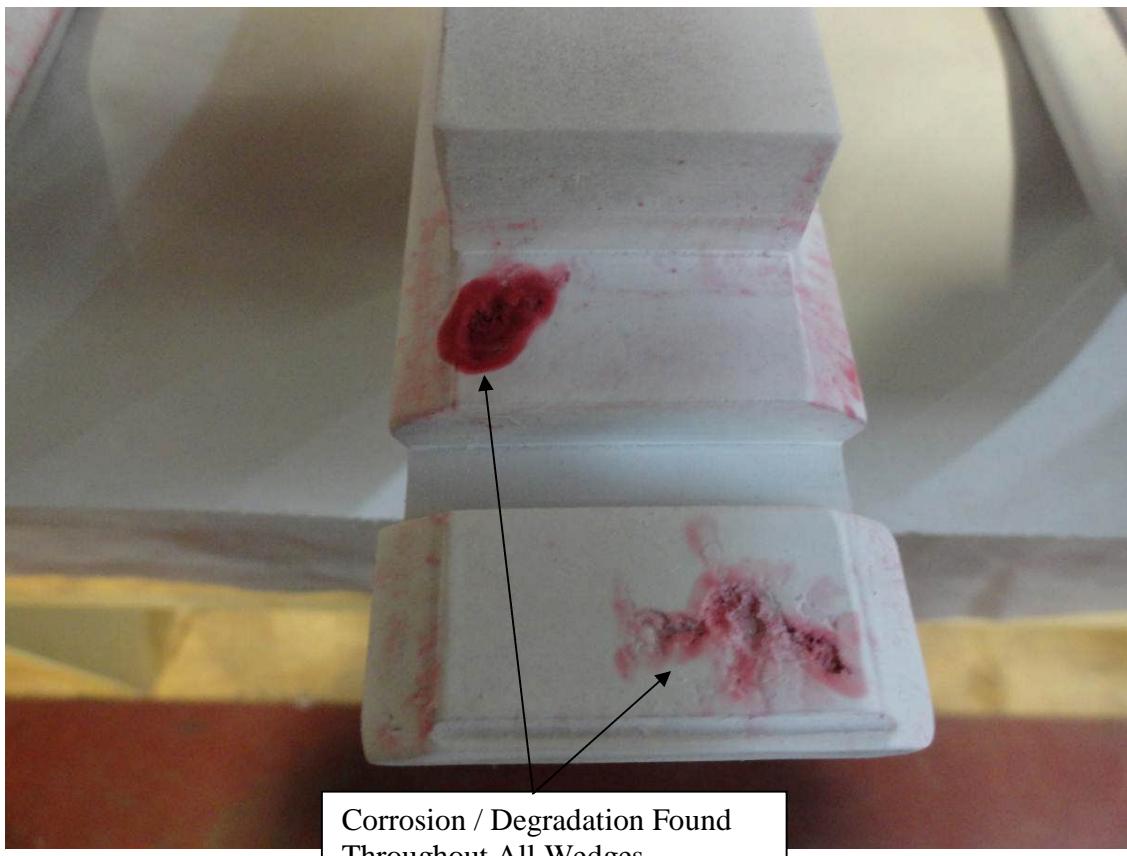
Meter Mfg.: N/A Model No.: N/A
Serial No.: N/A Calibration Due: N/A

INSPECTION RESULTS

Acceptable: _____ Unacceptable: _____ Yes _____

Remarks: 1. The extent of corrosion / degradation found throughout the all rotor wedges was such that it was not possible to get accurate results by using Penetrant Inspection techniques. See Page C-4.

Dennis Lavelle
Technician (Print)



Technician (Signature)

Assistant (Print)

Assistant
(Signature)

LEVEL II III

LEVEL I II

MAGNETIC PARTICLE NDE INSPECTION SHAFTS, JOURNALS & COUPLING

Customer:	Oklahoma Gas & Electric	Date:	10/28/2011
Station/Unit:	Tinker AFB	Job No:	11G779
Mfg & S/N:	EM B123A493VA1	Heat Number:	N/A
Procedure:	E-709-01	Heat Code:	N/A
Specification:	N/A	Quantity:	1 each
Scope:	Magnetic Particle Inspection of Shafts, Journals & Coupling		

TEST PARAMETERS

Fluorescent

Visible

Manufacturer:	Magnaflux
Type:	14AM Prepared Bath
Batch:	10E09K

Manufacturer:	N/A
Type:	N/A
Batch:	N/A

Ultraviolet Light Data:

Light Mfg.:	Magnaflux
Serial No.:	10960824

Model:	ZB-100F
Intensity @ 15"	780 μ W / cm ²

Ultraviolet Light Meter Data:

Meter Mfg.:	Mannix Mfg.
Serial No.:	AC.52890

Model:	UV-340
Calibration Due:	8/23/2012

INSPECTION RESULTS

Acceptable: Yes Unacceptable: _____

Remarks: 1. No Linear Indications were found.

Dennis Lavelle

Technician (Print)

Technician (Signature)

LEVEL II III

MAGNETIC PARTICLE NDE INSPECTION ROTOR BODY

Customer:	Oklahoma Gas & Electric	Date:	10/28/2011
Station/Unit:	Tinker AFB	Job No:	11G779
Mfg & S/N:	EM B123A493VA1	Heat Number:	N/A
Procedure:	E-709-01	Heat Code:	N/A
Specification:	N/A	Quantity:	1
Scope:	Magnetic Particle Inspection of the entire Rotor Body		

TEST PARAMETERS

Fluorescent

Visible

Manufacturer:	Magnaflux
Type:	14AM Prepared Bath
Batch:	10E09K

Manufacturer:	N/A
Type:	N/A
Batch:	N/A

Ultraviolet Light Data:

Light Mfg.:	Magnaflux
Serial No.:	10960824

Model:	ZB-100F
Intensity @ 15"	780 μ W / cm ²

Ultraviolet Light Meter Data:

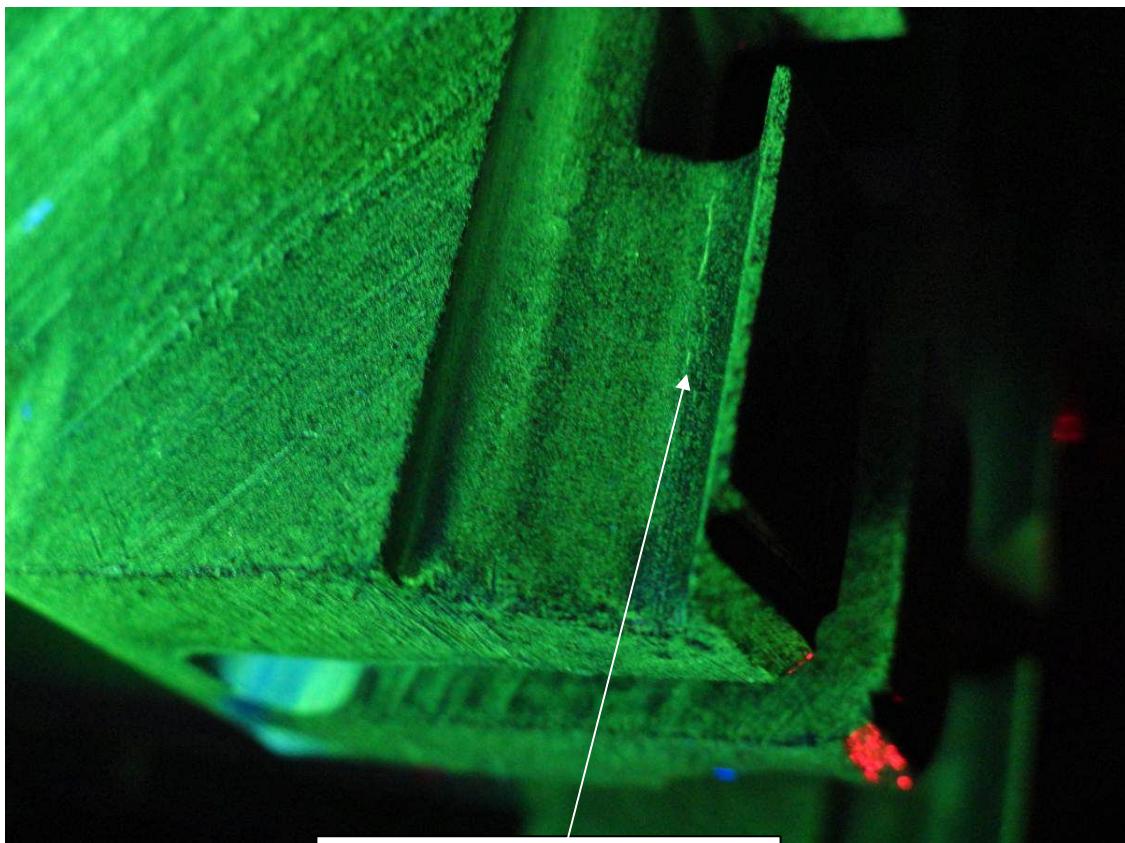
Meter Mfg.:	Mannix Mfg.
Serial No.:	AC.52890

Model:	UV-340
Calibration Due:	8/23/2012

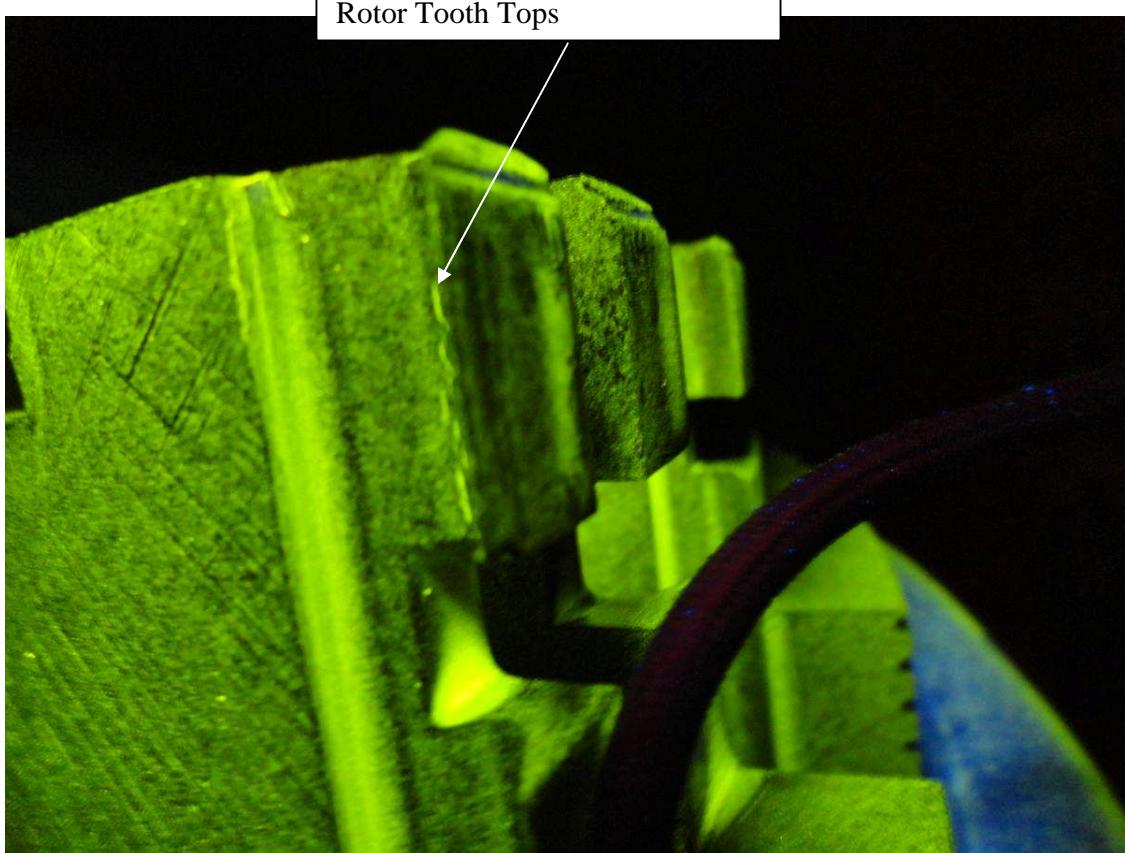
INSPECTION RESULTS

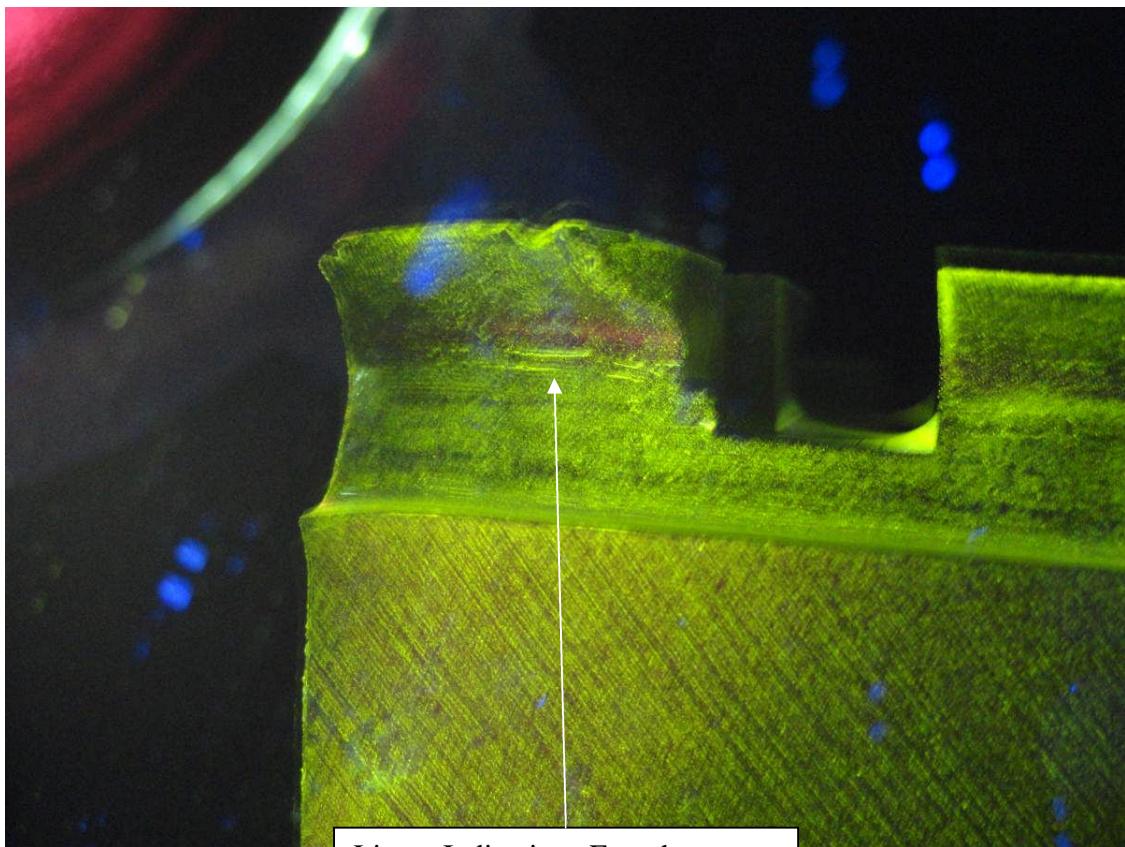
Acceptable: _____ Unacceptable: _____ Yes _____

Remarks: **1. Linear Indications were found on 34 tooth tops. See Pages C-7 and C-8.**

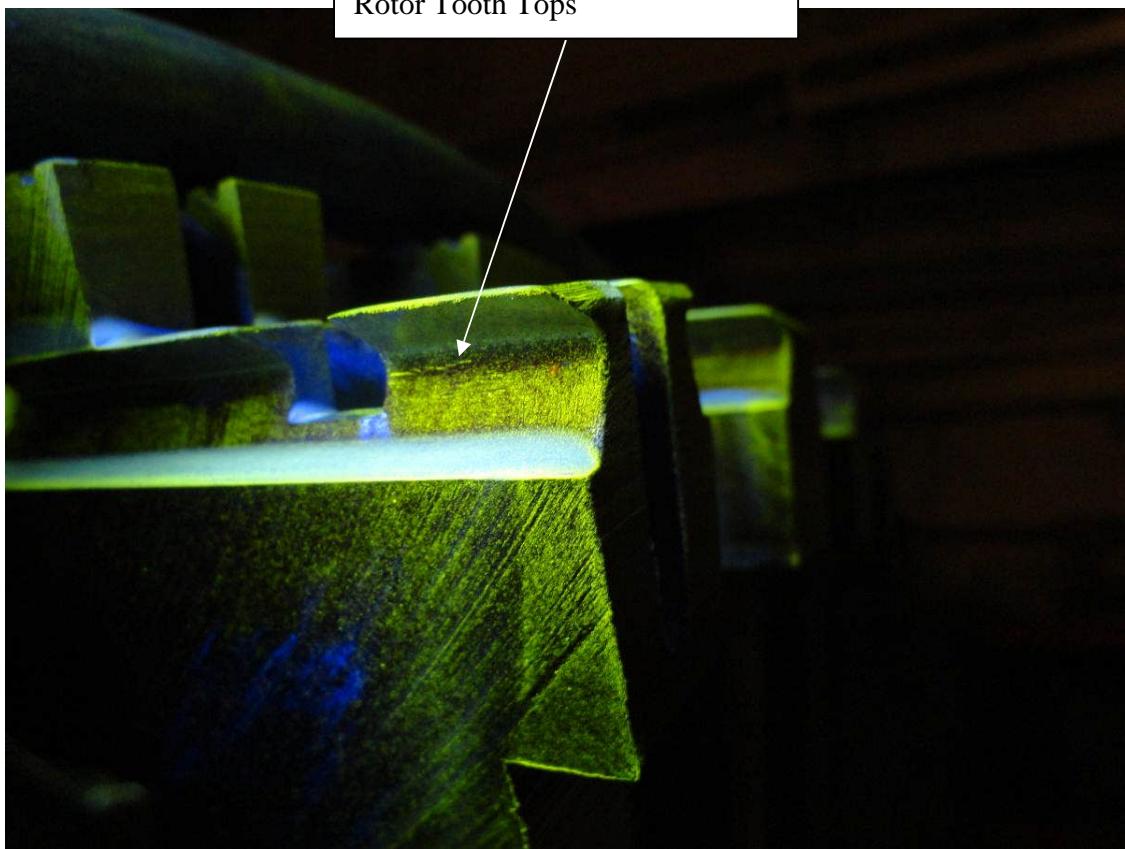


Dennis Lavelle


Technician (Print)


Technician (Signature)

LEVEL II III



Linear Indications Found on
Rotor Tooth Tops

Linear Indications Found on
Rotor Tooth Tops

MAGNETIC PARTICLE NDE INSPECTION RETAINING RINGS

Customer:	Oklahoma Gas & Electric	Date:	10/25/2011
Station/Unit:	Tinker AFB	Job No:	11G779
Mfg & S/N:	EM B123A493VA1	Heat Number:	N/A
Procedure:	E-709-01	Heat Code:	N/A
Specification:	N/A	Quantity:	2
Scope:	Magnetic Particle Inspection of the Retaining Rings		

TEST PARAMETERS

Fluorescent

Visible

Manufacturer:	Magnaflux
Type:	14AM Prepared Bath
Batch:	10E09K

Manufacturer:	N/A
Type:	N/A
Batch:	N/A

Ultraviolet Light Data:

Light Mfg.:	Magnaflux
Serial No.:	10960824

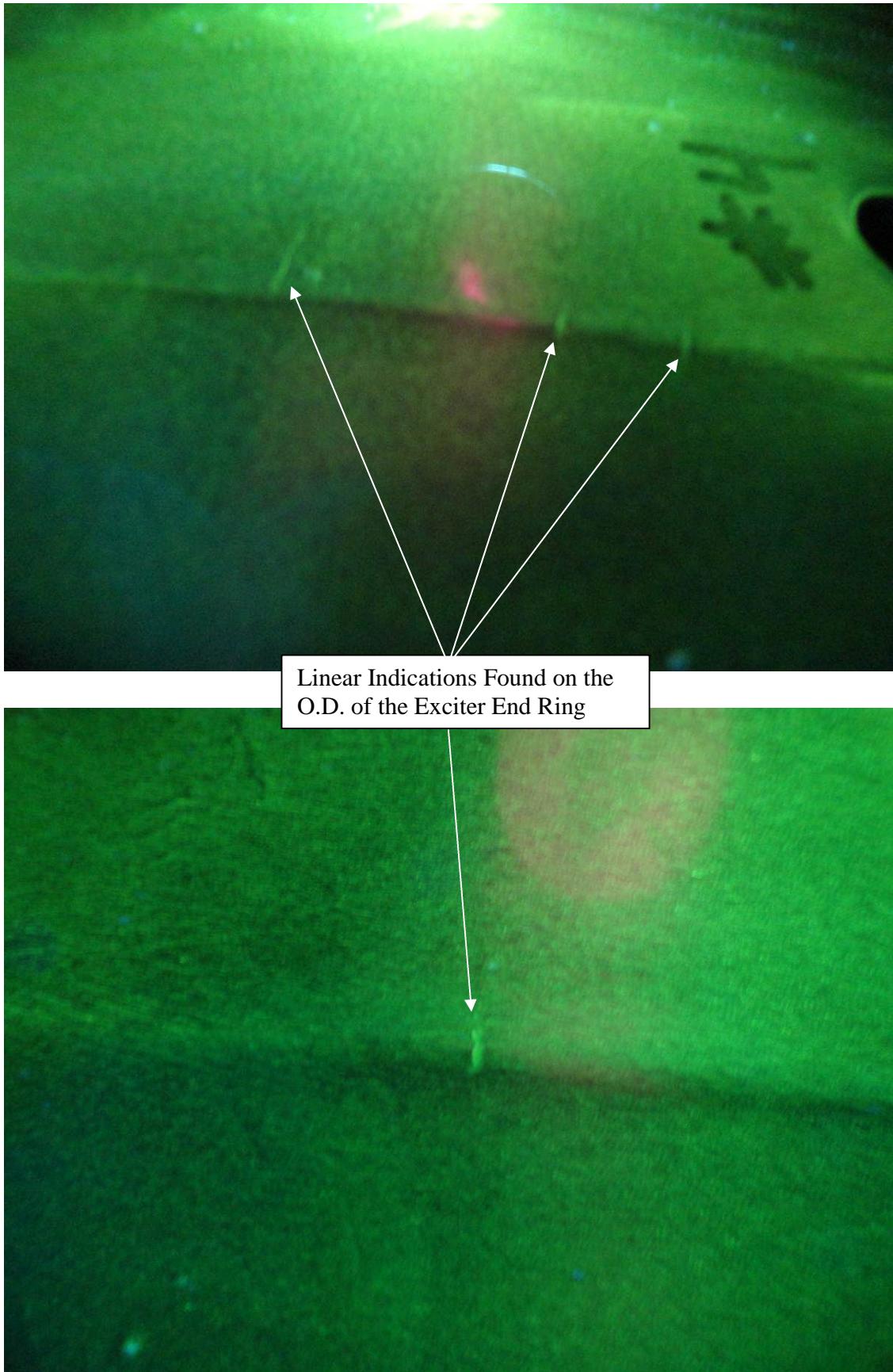
Model:	ZB-100F
Intensity @ 15"	780 μ W / cm ²

Ultraviolet Light Meter Data:

Meter Mfg.:	Mannix Mfg.
Serial No.:	AC.52890

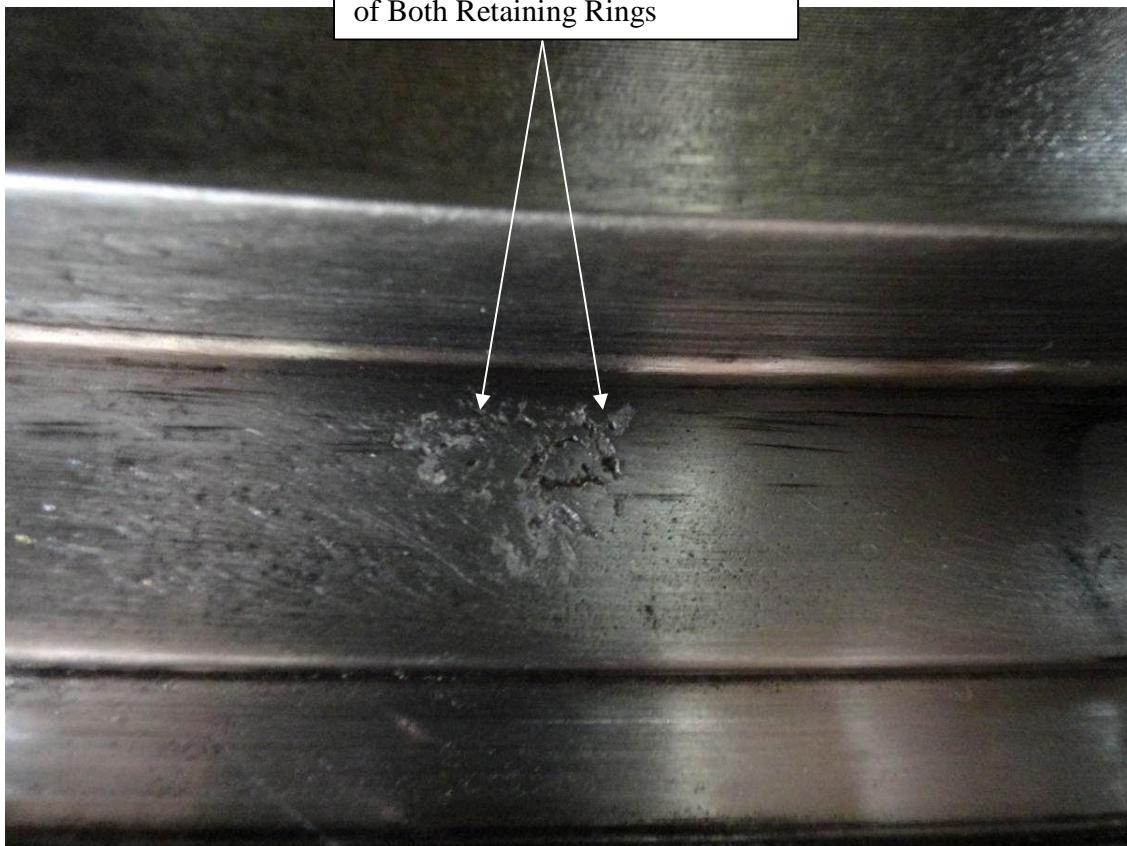
Model:	UV-340
Calibration Due:	8/23/2012

INSPECTION RESULTS


Acceptable: _____ Unacceptable: _____ Yes _____


Remarks: **1. Linear Indications were found on the O.D. of the exciter end retaining ring. See Figure C-10.**
2 Aluminum deposits transferred during arcing were found on the nose of the retaining ring. See Page C-11.

Dennis Lavelle
Technician (Print)


Technician (Signature)

LEVEL II III

Aluminum Deposits Transferred
Due to Arcing Found on the Nose
of Both Retaining Rings

NDE HARDNESS TESTING RETAINING RINGS

Customer: Oklahoma Gas & Electric Date: 10/25/2011
Station: Tinker AFB Job No: 11G779
Mfg. & S/N: EM B123A493VA1 Description: O.D. of Retaining Rings
Specification: Hardness Testing Material: Steel
Scale: Hardness Rockwell C Quantity: 2
Scope: Hardness Testing of the O.D. of the Retaining Rings

Hardness Scope Data:

Scope Mfg.: Phase II Model: PHT-3500
Serial No.: HL0108123122 Sensor Type: Dynamic
Calibration Due: 7/2/2012

Calibration Block Data:

Block Mfg.: Phase II Accuracy: HRC 57.9 (+/-1)
Serial No.: 0812299

Results:

Turbine End Retaining Ring					
0°	Hole # 1	Hole # 2	Hole # 3	Hole # 4	Hole # 5
1	40.7	40.7	43.2	40.6	39.9
2	48.8	37.8	42.7	42.5	38.1
3	43.4	42.3	43.3	40.9	42.8
Avg.	44.3	40.3	43.1	41.3	40.3
Average of Area at 0° - 41.9					

Turbine End Retaining Ring					
90°	Hole # 1	Hole # 2	Hole # 3	Hole # 4	Hole # 5
1	37.5	40.7	41.2	41.6	39.6
2	40.0	45.6	37.2	41.0	40.5
3	40.5	40.0	35.4	40.1	41.9
Avg.	39.3	42.1	37.9	40.9	40.7
Average of Area at 90° - 40.2					

Turbine End Retaining Ring					
180°	Hole # 1	Hole # 2	Hole # 3	Hole # 4	Hole # 5
1	41.2	36.3	37.7	42.7	40.2
2	40.8	36.5	37.7	41.9	39.2
3	38.4	35.0	37.5	43.2	40.1
Avg.	40.1	35.9	37.6	42.6	39.8
Average of Area at 180° - 39.2					

Turbine End Retaining Ring					
270°	Hole # 1	Hole # 2	Hole # 3	Hole # 4	Hole # 5
1	40.3	41.5	39.4	38.8	39.4
2	39.4	40.0	39.5	39.7	39.5
3	40.7	40.3	39.2	39.0	39.2
Avg.	40.1	40.6	39.4	39.2	39.4
Average of Area at 270° - 40.2					

Exciter End Retaining Ring					
0°	Hole # 1	Hole # 2	Hole # 3	Hole # 4	Hole # 5
1	42.5	40.0	40.9	38.7	40.3
2	41.6	38.8	40.2	36.6	40.2
3	42.7	39.5	39.1	41.7	39.1
Avg.	42.3	39.4	40.1	39.0	40.1
Average of Area at 0° - 40.2					

Exciter End Retaining Ring					
90°	Hole # 1	Hole # 2	Hole # 3	Hole # 4	Hole # 5
1	38.5	39.8	38.4	38.9	42.2
2	40.1	38.5	36.1	40.1	40.3
3	41.2	41.7	38.4	38.9	39.0
Avg.	39.9	40.0	37.6	39.3	40.5
Average of Area at 90° - 39.5					

<i>Exciter End Retaining Ring</i>					
<i>180°</i>	<i>Hole # 1</i>	<i>Hole # 2</i>	<i>Hole # 3</i>	<i>Hole # 4</i>	<i>Hole # 5</i>
1	38.1	38.5	37.6	38.3	39.3
2	43.7	37.2	40.8	38.8	39.7
3	39.1	38.4	37.1	40.6	38.5
Avg.	40.3	38.0	38.5	39.2	39.2
<i>Average of Area at 180° - 39.0</i>					

<i>Exciter End Retaining Ring</i>					
<i>270°</i>	<i>Hole # 1</i>	<i>Hole # 2</i>	<i>Hole # 3</i>	<i>Hole # 4</i>	<i>Hole # 5</i>
1	38.2	40.6	40.1	40.1	38.0
2	43.3	37.2	39.2	39.1	39.7
3	40.3	38.1	42.1	38.7	40.3
Avg.	40.6	38.6	40.5	39.3	39.3
<i>Average of Area at 270° - 39.7</i>					

INSPECTION RESULTS

Acceptable: _____ Unacceptable: _____ Yes _____

Remarks: **1. All hardness values above specification limits**

Dennis Lavelle
 Technician (Print)

Technician (Signature)

LEVEL II III

MAGNETIC PARTICLE NDE INSPECTION BLOWER FANS

Customer:	Oklahoma Gas & Electric	Date:	10/29/2011
Station/Unit:	Tinker AFB	Job No:	11G779
Mfg & S/N:	EM B123A493VA1	Heat Number:	N/A
Procedure:	E-709-01	Heat Code:	N/A
Specification:	N/A	Quantity:	2
Scope:	Magnetic Particle Inspection of the Blower Fans		

TEST PARAMETERS

Fluorescent

Visible

Manufacturer:	Magnaflux
Type:	14AM Prepared Bath
Batch:	10E09K

Manufacturer:	N/A
Type:	N/A
Batch:	N/A

Ultraviolet Light Data:

Light Mfg.:	Magnaflux
Serial No.:	10960824

Model:	ZB-100F
Intensity @ 15"	780 μ W / cm ²

Ultraviolet Light Meter Data:

Meter Mfg.:	Mannix Mfg.
Serial No.:	AC.52890

Model:	UV-340
Calibration Due:	8/23/2012

INSPECTION RESULTS

Acceptable: Yes

Unacceptable: _____

Remarks: 1. No Linear Indications were found.

Blower Fans

Dennis Lavelle
Technician (Print)

Technician (Signature)

LEVEL II III

ULTRASONIC NDE INSPECTION REPORT

J-LEADS

Customer:	Oklahoma Gas & Electric	Date:	10/30/2011
Station:	Tinker AFB	Job No.:	11G779
Mfg. & S/N:	EM B123A493VA1	Heat Number:	N/A
Procedure:	E-587	Heat Code:	N/A
Specification:	N/A	Quantity:	2
Scope:	Ultrasonic Inspection of the J-Leads		

TEST PARAMETERS

Flaw Detector: Sonotest Type: Sitescan 123W Serial #: I002716
Cal. Block: IIW Block Ref. Block: N/A Couplant: Sonotech UTX
Procedure: Sonomatic Spec: Customer Temperature: Ambient

Transducer	S/N	Type	Angle	Size	Frequency	Primary Gain	Additional Gain	Total Gain
Sonotest	5025	POC	0	.5"	2.25	54	6	60
Sonotest	5025	POC	45	.5"	2.25	62	6	68

Acceptable: **Yes** Unacceptable:

Unacceptable:

Remarks: **1. No Indications were found.**

1. No Indications were found.

Dennis Lavelle

Technician (Print)

Dula

Assistant (Print)

Technician (Signature)

LEVEL II
 III

Assistant (Signature) LEVEL I II

LIQUID PENETRANT NDE INSPECTION REPLACEMENT J-LEAD WEDGES

Customer: Oklahoma Gas & Electric Date: 11/15/2011
Station: Tinker AFB Job No: 11G779
Mfg. & S/N: EM B123A493VA1 Heat Number: N/A
Procedure: E-165-02 Heat Code: N/A
Specification: N/A Quantity: 14 total
Scope: Liquid Penetrant Inspection of 14 Replacement J-Lead Wedges

TEST PARAMETERS

Fluorescent

Visible

Manufacturer: _____

	Penetrant	Remover	Developer
Type:	<u>N/A</u>	<u>N/A</u>	<u>N/A</u>
Batch:	<u>N/A</u>	<u>N/A</u>	<u>N/A</u>
Time:	<u>N/A</u>	<u>N/A</u>	<u>N/A</u>

Manufacturer: _____

	Penetrant	Remover	Developer
Type:	<u>SKL-SP1</u>	<u>SKC-S</u>	<u>SKD-S2</u>
Batch:	<u>10E03K</u>	<u>10A01K</u>	<u>10E10K</u>
Time:	<u>20 Minutes</u>	<u>N/A</u>	<u>N/A</u>

Ultraviolet Light Data:

U.V. Light Mfg.: N/A Model No.: N/A
Serial No.: N/A Intensity @ 15": N/A

Ultraviolet Light Meter Data:

Meter Mfg.: N/A Model No.: N/A
Serial No.: N/A Calibration Due: N/A

INSPECTION RESULTS

Acceptable: _____ Yes Unacceptable: _____

Remarks: 1. No Linear Indications were found.

Dennis Lavelle
Technician (Print)

Technician (Signature)

LEVEL II III

MAGNETIC PARTICLE NDE INSPECTION REPLACEMENT RETAINING RINGS

Customer:	Oklahoma Gas & Electric	Date:	2/7/2012
Station/Unit:	Tinker AFB	Job No:	11G779
Mfg & S/N:	EM B123A493VA1	Heat Number:	N/A
Procedure:	E-709-01	Heat Code:	N/A
Specification:	N/A	Quantity:	2
Scope:	Magnetic Particle Inspection of Replacement Retaining Rings		

TEST PARAMETERS

Fluorescent

Visible

Manufacturer:	Magnaflux
Type:	14AM Prepared Bath
Batch:	10E09K

Manufacturer:	N/A
Type:	N/A
Batch:	N/A

Ultraviolet Light Data:

Light Mfg.:	Magnaflux
Serial No.:	10960824

Model:	ZB-100F
Intensity @ 15"	780 μ W / cm ²

Ultraviolet Light Meter Data:

Meter Mfg.:	Mannix Mfg.
Serial No.:	AC.52890

Model:	UV-340
Calibration Due:	8/23/2012

INSPECTION RESULTS

Acceptable: Yes Unacceptable: _____

Remarks: 1. No Linear Indications were found.

Dennis Lavelle

Technician (Print)

Technician (Signature)

LEVEL II III

LIQUID PENETRANT NDE INSPECTION REPLACEMENT BODY WEDGES

Customer: Oklahoma Gas & Electric Date: 2/7/2012
Station: Tinker AFB Job No: 11G779
Mfg. & S/N: EM B123A493VA1 Heat Number: N/A
Procedure: E-165-02 Heat Code: N/A
Specification: N/A Quantity: 14 total
Scope: Liquid Penetrant Inspection of 25% of Replacement Body Wedges

TEST PARAMETERS

Fluorescent

Manufacturer: _____
Penetrant Remover Developer
Type: **N/A** **N/A** **N/A**
Batch: **N/A** **N/A** **N/A**
Time: **N/A** **N/A** **N/A**

Visible

Manufacturer: _____
Penetrant Remover Developer
Type: **SKL-SP1** **SKC-S** **SKD-S2**
Batch: **10E03K** **10A01K** **10E10K**
Time: **20 Minutes** **N/A** **N/A**

Ultraviolet Light Data:

U.V. Light Mfg.: N/A
Serial No.: N/A

Model No.: N/A
Intensity @ 15": N/A

Ultraviolet Light Meter Data:

Meter Mfg.: N/A
Serial No.: N/A

Model No.: N/A
Calibration Due: N/A

INSPECTION RESULTS

Acceptable: Yes Unacceptable: _____

Remarks: 1. No Linear Indications were found.

Dennis Lavelle
Technician (Print)

Technician (Signature)

LEVEL II III

APPENDIX D

OKLAHOMA GAS & ELECTRIC
TINKER 5A RETAINING RING FORGINGS
CERTIFICATIONS

Prepared by

Scot Forge

Jerry Giessinger

Spring Grove, Illinois

Chemical Certs.....	D-1
Mechanical Certs	D-2
Magnetic Particle Inspection Results	D-3
Ultrasonic Inspection Results	D-4
Certificate of Compliance	D-5

APPENDIX D

CHEMICAL CERTIFICATIONS

8001 Winn Rd., Box 8
Spring Grove, IL 60081
847/587-1000
FAX 847/587-2000

G01045 3 SS
Heat # Y8220

PO # 11G779

MATERIAL CERTIFICATION

Page 1 of 5

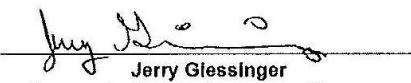
S O T L O D	BRUSH/GMS 601 BRADDOCK AVE TURTLE CREEK, PA 15145-2069	Shipping Information DATE Shipped: 01/11/2012 Via: CCX Bill: 3-96469	Material Cert Number 730021 w2274R0
			Revision Date 01/10/2012

Item 1 of 1										
Material	ASTM A-288-91 Class 6									
Heat Treat	per Specification									
Destructive Test	per Specification *Remnant test material to be included with shipment.									
Finish	Rough Machine to sizes shown									
Other	Ultrasonic examination per ASTM A 531-91 (2006), Magnetic Particle examination per ASTM A-275 with ASTM A788 Supplement S18									
Size	OD	ID	Length	(inches)						
	33.5	27.5	23.6							
Surface	125 RMS	125 RMS	125 RMS							

Heat Number	# of Pieces	(MILL - EQS-ELLWOOD QUALITY)
Y8220	2	MSDS Previously Sent

Note: Additional prefix letter stamped on product with heat number is for our inventory purposes only and not relevant to heat number.

Chemical Composition (Wt. %)


C	Mn	P	S	Si	Ni	Cr	Mo	Cu	Al	V
0.31	0.96	0.007	0.013	0.23	1.73	0.92	0.39	0.16	0.010	0.086
H	As	B	Ca	Cb	Co	N	Pb	Sb	Sn	
0.00010	0.005	0.0001	0.0006	0.003	0.010	0.0091	0.0029	0.001	0.007	

Austenite grain size 7/8

Jominy Hardenability

(In.)	1	2	3	4	5	6	7	8	9	10	11	12	13
(HRC)	51	51	51	51	51	50	50	50	50	50	50	50	50
	14	15	16	18	20	22	24	26	28	30	32		
	50	50	50	50	50	50	50	50	49	49			

Note: The recording of false, fictitious or fraudulent statements or entries on this document may be punishable as a felony under Federal Statute.

Jerry Glessinger
Corporate Quality Assurance Manager
 This certification has been created and reviewed in
 compliance with the Scot Forge QMS

APPENDIX D

MECHANICAL CERTIFICATIONS

8001 Winn Rd., Box 8
Spring Grove, IL 60081
847/587-1000
FAX 847/587-2000

G01045 3 SS
Heat # Y8220

PO # 11G779

MATERIAL CERTIFICATION

Page 2 of 5

BRUSH/GMS

Material Cert Number
730021 w2274R0

Mechanical Properties:

Pcs	Tensile PSI	Yield ¹ PSI	Elongation %	Reduction of Area %	Comments
1	157,026	141,555	16.9	56.2	LONGITUDINAL
1	151,749	139,451	17.4	55.4	LONGITUDINAL

¹(Offset: .02%)

Charpy Impact Results:

Temp	1st	2nd	3rd	Comments
72 F	59 Ft/Lbs	51 Ft/Lbs	55 Ft/Lbs	LONGITUDINAL
72 F	61 Ft/Lbs	60 Ft/Lbs	58 Ft/Lbs	LONGITUDINAL

Brinell Hardness Results:

Pcs	3000 Kg Load	
1	341	1 HB[HLD]OK
1	331	2 HB[HLD]OK

Other Testing or Inspections:

Normalize at 1650 degrees F for 6.5 hours
Austenitized at 1550 degrees F for 11.25 hours and quenched
Temper at 1125 degrees F for 10 hours

Jerry Glessinger
Corporate Quality Assurance Manager
This certification has been created and reviewed in
compliance with the Scot Forge QMS

Note: The recording of false, fictitious or fraudulent
statements or entries on this document may be
punishable as a felony under Federal Statute.

APPENDIX D

MAGNETIC PARTICLE INSPECTION

8001 Winn Rd., Box 8
Spring Grove, IL 60081
847/587-1000
FAX 847/587-2000

G01045 3 SS
Heat # Y8220

PO # 11G779
MATERIAL CERTIFICATION

Page 3 of 5

BRUSH/GMS

Material Cert Number
730021 w2274R0

Magnetic Particle Testing
ASTM A-275 with ASTM A788 Supplement S18

Test Number	Test Date	Make	Serial No	Model
18-001	01/09/2012	MagnaFlux	205125	D-2100XL
Batch	Particle Type	Vehicle	Concentration	Application
10G078	14A/Wet Fluores	Water Plus	.1 - .4	Spray
Condition	Material	Longitudinal	Residual Field	Method
Machined	Circular	Magnetization	DC Current: 2500	Continuous
125 RMS or Better	Magnetization	DC Current: 2500	AMPS	AMPS
Qty Tested	Remarks			
2	No reportable indications/acceptable			
	S/N: 730021-1 & -2			

Nathan Woodruff
LEVEL II
Exp: 10/11/2014

Note: The recording of false, fictitious or fraudulent statements or entries on this document may be punishable as a felony under Federal Statute.

Jerry Glessinger
Corporate Quality Assurance Manager
This certification has been created and reviewed in compliance with the Scot Forge QMS

APPENDIX D

ULTRASONIC TEST RESULTS

SCOTTM FORGE

8001 Winn Rd., Box 8
Spring Grove, IL 60081
847/587-1000
FAX 847/587-2000

G01045 3 SS
Heat # Y8220

PO # 11G779

MATERIAL CERTIFICATION

Page 4 of 5

BRUSH/GMS

Material Cert Number
730021 w2274R0

Ultrasonic Testing - Reference Block Technique

ASTM A 531-91 (2006)
RADIAL STRAIGHT BEAM TEST
CALIBRATION STANDARD S/N: SB1337A

Test Number 19-001	Test Date 01/09/2012	Make Krautkramer	Serial No 11050093	Model USM-GO
Material Condition Machined 125 RMS or Better	Sensitivity 80% Full Screen Height	Couplant Esgard PL-2	Transducer 1.00" Round 5.00 MHZ	Reference Standard Hole Size: .125" FBH Metal Path: 2.5" Alloy: A350LF2
Qty Tested 2	Remarks No reportable indications/acceptable S/N: 730021-1 & -2			

Nathan Woodruff
LEVEL II
Cert Exp: 12/07/2013

Ultrasonic Testing - Back Reflection Technique

ASTM A 531-91 (2006)
AXIAL STRAIGHT BEAM TEST

Test Number 19-002	Test Date 01/09/2012	Make Krautkramer	Serial No 11050093	Model USM-GO
Material Condition Machined 125 RMS or Better	Sensitivity 80% Full Screen Height	Couplant Esgard PL-2	Transducer 1.00" Round 5.00 MHZ	DB Gain 21
Qty Tested 2	Remarks No reportable indications/acceptable S/N: 730021-1 & -2			

Nathan Woodruff
LEVEL II
Cert Exp: 12/07/2013

Jerry Glessinger
Corporate Quality Assurance Manager
This certification has been created and reviewed in
compliance with the Scot Forge QMS

Note: The recording of false, fictitious or fraudulent
statements or entries on this document may be
punishable as a felony under Federal Statute.

APPENDIX D

CERTIFICATE OF COMPLIANCE

8001 Winn Rd., Box 8
Spring Grove, IL 60081
847/587-1000
FAX 847/587-2000

G01045 3 SS
Heat # Y8220

PO # 11G779

MATERIAL CERTIFICATION

Page 5 of 5

BRUSH/GMS

Material Cert Number
730021 w2274R0

Ultrasonic Testing - Reference Block Technique

ASTM A 531-91 (2006)

RADIAL AND AXIAL ANGLE BEAM TEST

Test Number	Test Date	Make	Serial No	Model
19-003	01/09/2012	Krautkramer	11050093	USM-GO
Material Condition	Sensitivity	Couplant	Transducer	Reference Standard
Machined 125 RMS or Better	80% Full Screen Height	Esgard PL-2	.50" X 1" 2.25 MHZ	Hole Size: 1% Notch Metal Path: Alloy: 4330VBE
Qty Tested	Remarks			
2	No reportable indications/acceptable S/N: 730021-1 & -2			

Nathan Woodruff
LEVEL II
Cert Exp: 12/07/2013

Compliance Statements:

We certify that the material listed was not processed with mercury bearing instruments and/or equipment which might cause contamination, nor was mercury handled in the immediate vicinity during the manufacturing process. We also certify that the material was not processed or cleaned with low melting point materials as alloying constituents, i.e. lead, zinc, cadmium, tin, antimony, bismuth, sulfur, or their compounds.

In accordance with the requirements of the Pressure Equipment Directive, all testing, inspection, and documentation is produced in accordance with EN 10204:2004 Type 3.1 and ISO 10474 Type 3.1.B

Material provided has been produced by Scot Forge under an approved quality program as defined within the Scot Forge QA Manual, Revision 3, Dated 08/17/11.

The products supplied are in compliance with the quantity and quality requirements of the purchase order and specifications noted. The test reports represent the actual attributes of the items furnished and the test results are in full compliance with all applicable specifications and order requirements.

Note: The recording of false, fictitious or fraudulent statements or entries on this document may be punishable as a felony under Federal Statute.

Jerry Glessinger
Corporate Quality Assurance Manager
This certification has been created and reviewed in compliance with the Scot Forge QMS

APPENDIX E

HIGH SPEED BALANCE REPORT

FOR

Brush GMS

Tinker

Generator Rotor

PROJECT NO. J11-05627

February 16th, 2012

DOC000260-12

Prepared By **David Schafer**
Dynamic Analysis Engineer

Approved By **Herb Jerke**
Project Manager

6609R W. Washington St. West Allis, WI. 53214

Table of Contents

COMMENTS	3
HIGH SPEED OPERATIONAL DATA	3
ELECTRICAL TEST DATA.....	4
Electrical Tests Prior to Balance	4
AC Impedance Test	4
Flux Probe Testing	4
Running Insulation Resistance.....	4
Flux Probe Test Data.....	6
ROTOR RUNOUTS	10
BALANCE RESULTS	11
Bode Plots.....	12
Rotor Balance Weight Map	16

COMMENTS

On February 16th, 2012 this rotor was balanced to 3600 RPM and over-sped to 3960 RPM.

Rotor balance weight data is included along with resonance data and bearing cap seismic data from all bearing pedestals. Shaft vibrations on Bode plots are in mils peak-to-peak per division. Pedestal seismic data are inches per second peak per division. Tabulated vibration measurements are in mils peak to peak.

The following chart displays the bearing relative vibration at operating speed (3600 RPM) after balancing.

	After Balance	
	mils	deg
Journal 1 Vertical	0.73	281
Journal 1 Horizontal	0.329	346
Journal 2 Vertical	0.37	180
Journal 2 Horizontal	0.149	117

HIGH SPEED OPERATIONAL DATA

Rotor Data

Rotor Weight:	34,000 lbs.	Ped. 1: Brg. Type:	Elliptical Sleeve
Overall Length:	253.6"	Running Clearance:	.019 to .021" (V)
Bearing Span:	200.0" (test set-up)		.040 to .042" (H)
Body Diameter:	31.0"	Ped. 2: Brg. Type:	Elliptical Sleeve
		Running Clearance:	.020 to .022" (V)
			.035 to .037 " (H)

Operational Data

- Normal Operating Speed: 3600 rpm
- Overspeed Planned: 3960 rpm
- Balance Speed: 3600 rpm
- Overspeed Level Attained: 3960 rpm for 1 minute

ELECTRICAL TEST DATA

Electrical Tests Prior to Balance

- Insulation Resistance at 500 VDC

1 minute $IR = 3.42 \text{ G}\Omega$

10 minute $IR = 4.18 \text{ G}\Omega$

Polarization Index = 1.22

- Total Winding Impedance

$V = 110.02 \text{ VAC}$

$A = 4.26 \text{ A}$

$Z = 25.8 \Omega$

- DC Winding Resistance

$R_f = 0.385 \Omega$ at 16°C average temperature (measured)

$R_f = 0.422 \Omega$ at 40°C average temperature (calculated)

AC Impedance Test

The running impedance was measured from 0 RPM to 3600 RPM to 0 RPM with 120 VAC applied across the collector rings. The Running Impedance Data and Graph are included in this report.

Flux Probe Testing

The rotor was tested using the "Generatortech" flux probe and analysis software. Copies of Generatortech flux probe data graph, turn short analysis summary and turn short data table at 3600 RPM are included in this report. The rotor shafts' physical Pole 1 corresponds to the Generatortech analysis designation of "Pole B".

Running Insulation Resistance

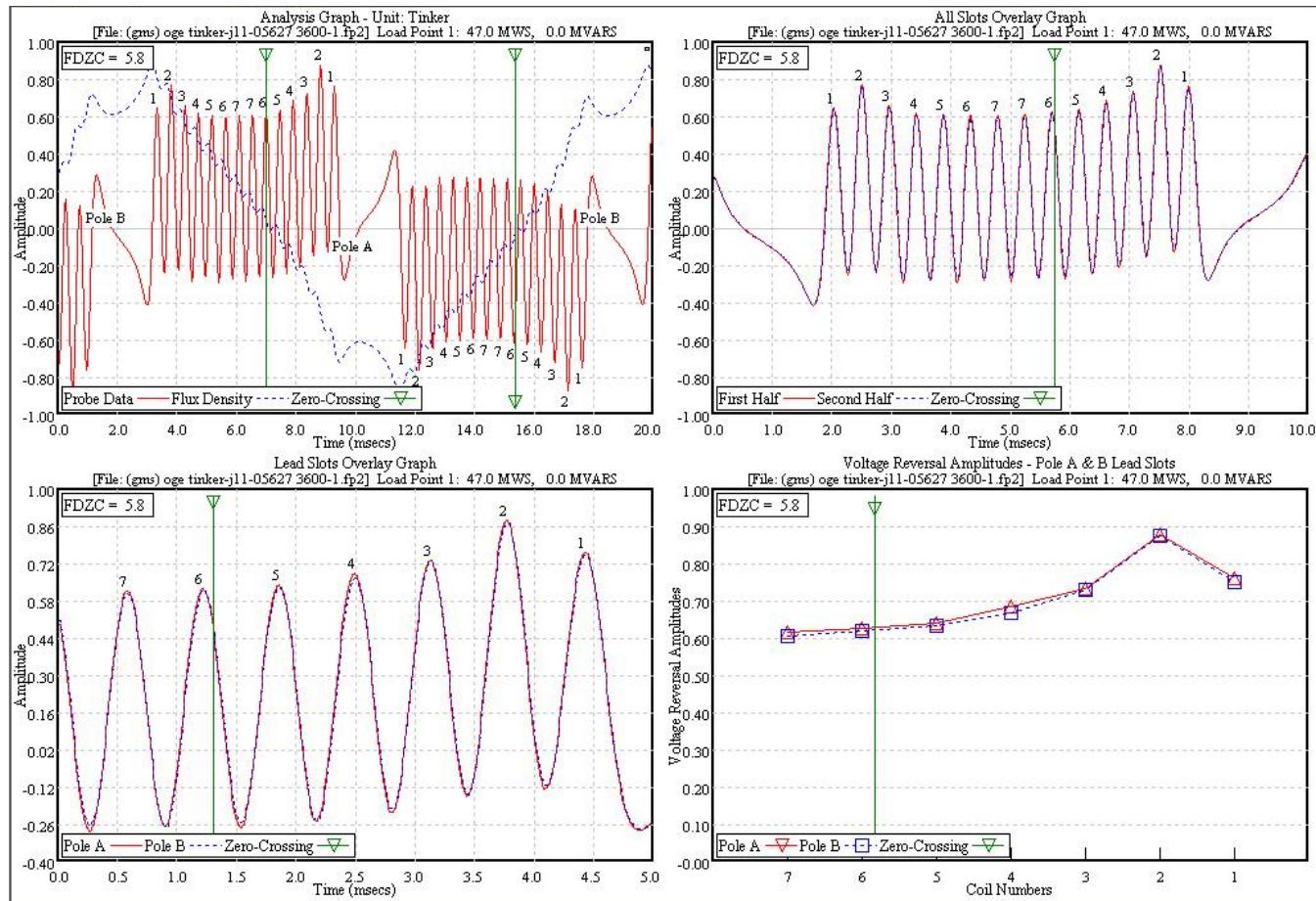
The insulation resistance was measured at 500 VDC while the rotor was rotated at 3600 RPM.

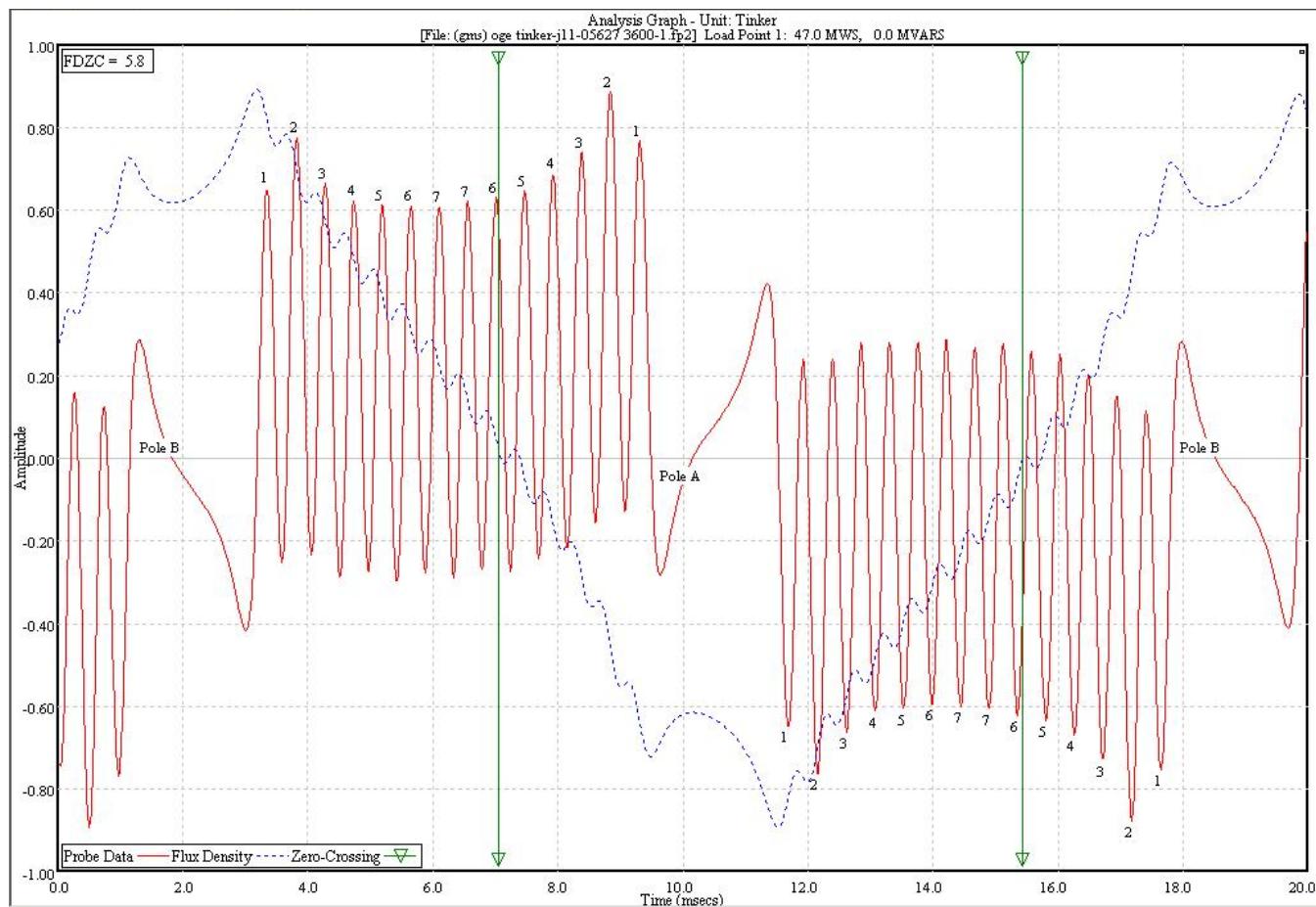
After Balance

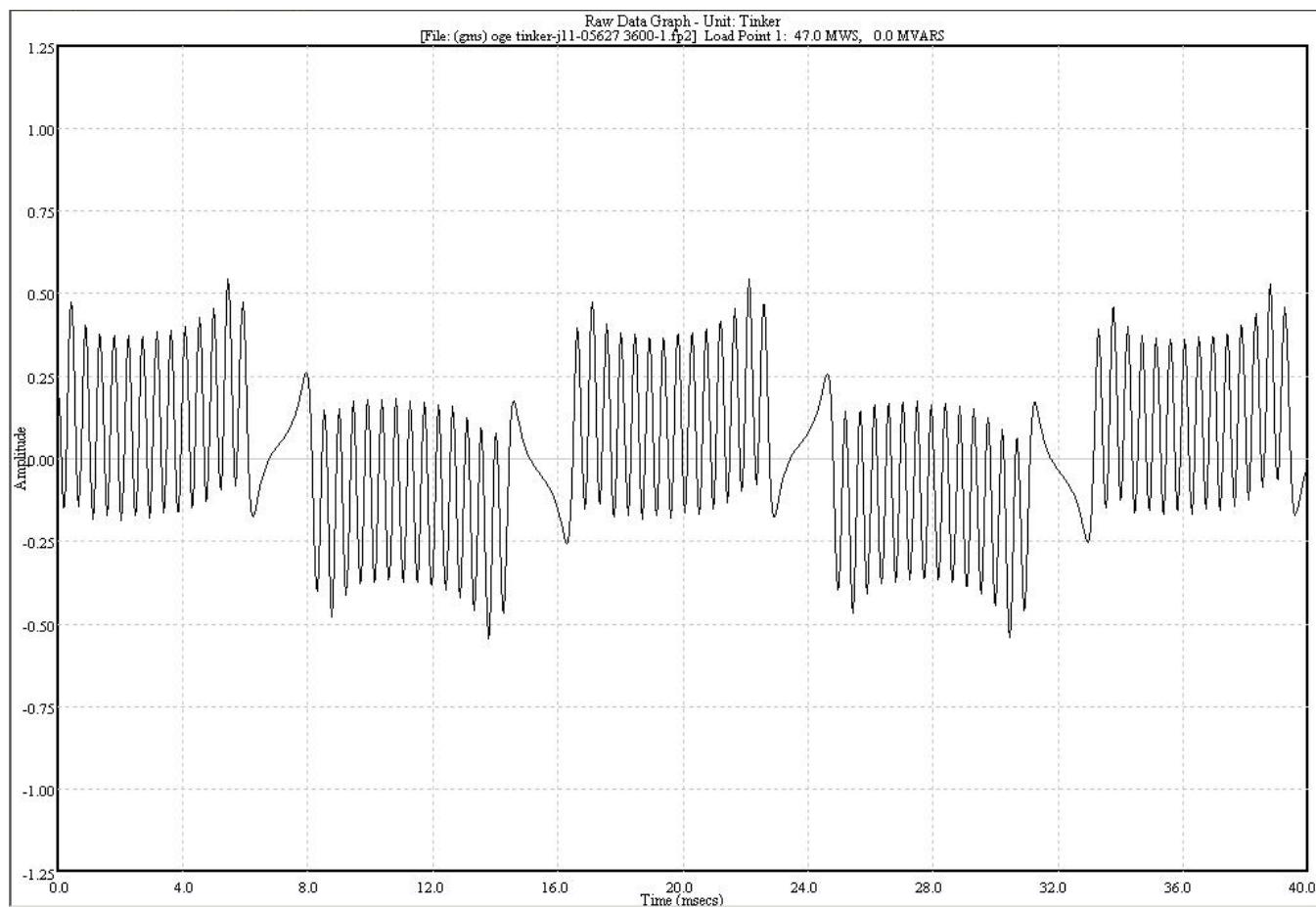
- $IR = 244 \text{ M}\Omega$, 0 RPM
- $IR = 177 \text{ M}\Omega$, 3600 RPM
- $IR = 167 \text{ M}\Omega$, 0 RPM

NOTE: Running insulation resistance (in bunker) values are typically lower than out of bunker measurements due to the inclusion of brush rigging and cable length in the measurement circuit.

**B.O.B Running Impedance Data Input
 At ReGENCo Rotor Balance Facility**


Job #: J11-05627
 Station Name (GMS) OGE
 Unit Number Tinker
 Customer (GMS) OGE Tinker
 Date Performed 02/16/12
 Tested by: C Witry


Speed Incr:	Applied Voltage	Meas. Current	Impedance	Speed Decr:	Applied Voltage	Meas. Current	Impedance
0	121.4	4.87	24.93	3600	121.0	5.48	22.08
200	121.3	5.02	24.16	3400	121.0	5.42	22.32
400	121.3	5.12	23.69	3200	121.0	5.41	22.37
600	121.3	5.19	23.37	3000	121.0	5.41	22.37
800	121.3	5.22	23.24	2800	121.0	5.41	22.37
1000	121.3	5.28	22.97	2600	121.1	5.41	22.38
1200	121.3	5.29	22.93	2400	121.1	5.40	22.43
1400	121.3	5.32	22.80	2200	121.1	5.40	22.43
1600	121.3	5.33	22.76	2000	121.0	5.39	22.45
1800	121.3	5.35	22.67	1800	121.0	5.39	22.45
2000	121.3	5.36	22.63	1600	121.0	5.38	22.49
2200	121.3	5.37	22.59	1400	121.0	5.37	22.53
2400	121.3	5.38	22.55	1200	121.0	5.35	22.62
2600	121.3	5.38	22.55	1000	121.1	5.32	22.76
2800	121.3	5.37	22.58	800	121.1	5.30	22.85
3000	121.3	5.35	22.66	600	121.1	5.26	23.02
3200	121.3	5.34	22.71	400	121.1	5.21	23.24
3400	121.3	5.34	22.72	200	121.2	5.09	23.81
3600	121.1	5.32	22.76	0	121.0	4.95	24.44


(GMS) OGE Tinker
B.O.B Running Impedance Data at 120 VAC
Test Performed at REGENCO Rotor Balance Facility, 2/16/12 Job #J11-05627

Flux Probe Test Data

Generatortech Shorted-Turn Data Table

FILE: (gms) oge tinker-j11-05627 3600-1.fp2

DATE: FEBRUARY 16, 2012 14:38:34

Path: C:\Documents and Settings\rettler\Desktop\GMS OGE Tinker-J11-05627

Unit Specific Data

Company: (GMS) OGE Station: Tinker

Unit History/Comments: Testing Preformed at REGENCO Balance Facility

Number of poles= 2 Coils/pole= 7 Max Load MWS= 0.0

Turns/Coil: 1=17 2=22 3=22 4=22 5=22 6=22 7=22

Load Point Data

Load Point= 1	MWS= 47.0	MVARs= 0.0	Field Amps= 66.9	Field Volts= 31.9
Flux Density Zero-Crossing= 5.8	Filter= none		Rotor RPM= 3600.0	Peak Height= Modified

Coil	Pole A Peak Size	Pole B Peak Size	Ratio of Sizes A/B	Ratio of Sizes B/A	Pole A Shorted Turn Indication	Pole B Shorted Turn Indication
1	0.771	0.760	1.016	0.985	—	—
2	0.891	0.885	1.007	0.993	—	—
3	0.743	0.738	1.007	0.993	—	—
4	0.693	0.675	1.026	0.974	—	—
5	0.650	0.640	1.015	0.985	—	—
6	0.634	0.627	1.012	0.988	—	—
7	0.623	0.613	1.017	0.984	—	—

NOTE: Coils displaying the highest sensitivity for shorted turns are: Coil 5 Coil 6

OK

ROTOR RUNOUTS

Rotor: GMS OGE Tinker
 Date: 2/14/2012

Job No.: J11-05627
Measurements made with rotor supported on journals.

Direction of Rotation as viewed from coupling end: _____
 0 Degree Reference: _____

	Face		0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
	A(RT)	A(L)	B	C	D	E	F	G	H	I	J	K	L	M	N	O	P	Q	R	S	T	U	V	W	X	Y	Z
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
45	4	-1		20	10	5	0	0	30	-40	-20	-60	-100	20	10	-90	-55	-5	-10	-10	0	-2	0	10	10	-30	
90	5	-1		40	0	-5	5	0	50	30	-35	-60	-110	35	0	-75	-50	8	-15	0	0	-3	-5	-10	-5	-50	
135	2	0		40	0	5	5	0	40	30	-50	0	-70	40	-5	-30	10	-5	-25	10	0	-3	-5	10	0	-15	
180	2	0		42	0	0	0	0	35	20	-45	50	-10	40	-8	30	10	10	0	30	0	-3	0	10	-10	5	20
225	6	-3		30	-10	0	-2	0	20	40	-30	0	-70	20	0	-50	-30	10	10	30	0	-3	-1	10	-25	-10	45
270	2	-1		0	-10	-5	0	0	10	150	-10	-70	-80	-10	8	-50	-20	0	25	35	0	-5	-5	-10	-55	-40	50
315	0	-1		-20	-10	0	0	0	-10	50	0	-50	-70	-10	10	-46	0	0	10	20	0	-5	-5	-10	-60	-30	18
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Min	0	-3	0	-20	-10	-5	-2	0	-10	-40	-50	-70	-110	-10	-8	-90	-55	-8	-25	-10	0	-5	-10	-60	-40	-50	

	Face		B	C	D	E	F	G	H	I	J	K	L	M	N	O	P	Q	R	S	T	U	V	W	X	Y	Z
	A																										
0	0.0000	0.0000	0.0020	0.0010	0.0005	0.0002	0.0000	0.0010	0.0040	0.0050	0.0070	0.0110	0.0010	0.0008	0.0090	0.0055	0.0008	0.0025	0.0010	0.0000	0.0005	0.0005	0.0010	0.0060	0.0040	0.0050	
45	0.0005	0.0000	0.0040	0.0020	0.0010	0.0002	0.0000	0.0040	0.0000	0.0030	0.0010	0.0010	0.0030	0.0018	0.0000	0.0000	0.0003	0.0015	0.0000	0.0000	0.0003	0.0005	0.0020	0.0070	0.0050	0.0020	
90	0.0006	0.0000	0.0060	0.0010	0.0000	0.0007	0.0000	0.0060	0.0070	0.0015	0.0010	0.0000	0.0045	0.0008	0.0015	0.0005	0.0000	0.0010	0.0010	0.0000	0.0002	0.0002	0.0005	0.0050	0.0035	0.0000	
135	0.0002	0.0000	0.0060	0.0010	0.0010	0.0007	0.0000	0.0050	0.0070	0.0000	0.0070	0.0040	0.0050	0.0003	0.0060	0.0065	0.0003	0.0000	0.0020	0.0000	0.0002	0.0000	0.0020	0.0060	0.0032	0.0035	
180	0.0002	0.0000	0.0062	0.0010	0.0005	0.0002	0.0000	0.0045	0.0060	0.0005	0.0120	0.0100	0.0050	0.0000	0.0120	0.0065	0.0018	0.0025	0.0040	0.0000	0.0002	0.0005	0.0020	0.0050	0.0045	0.0070	
225	0.0009	0.0000	0.0050	0.0000	0.0005	0.0000	0.0000	0.0030	0.0080	0.0020	0.0070	0.0040	0.0030	0.0008	0.0040	0.0025	0.0018	0.0035	0.0040	0.0000	0.0002	0.0004	0.0020	0.0035	0.0030	0.0095	
270	0.0003	0.0000	0.0020	0.0000	0.0000	0.0002	0.0000	0.0020	0.0190	0.0040	0.0000	0.0030	0.0000	0.0016	0.0040	0.0035	0.0008	0.0050	0.0045	0.0000	0.0000	0.0005	0.0000	0.0005	0.0100	0.0100	
315	0.0001	0.0000	0.0000	0.0000	0.0005	0.0002	0.0000	0.0090	0.0050	0.0020	0.0040	0.0000	0.0018	0.0044	0.0055	0.0008	0.0035	0.0030	0.0000	0.0000	0.0000	0.0000	0.0000	0.0010	0.0068	0.0068	
0	0.0000	0.0000	0.0020	0.0010	0.0005	0.0002	0.0000	0.0010	0.0040	0.0050	0.0070	0.0110	0.0010	0.0008	0.0090	0.0055	0.0008	0.0025	0.0010	0.0000	0.0005	0.0005	0.0010	0.0060	0.0040	0.0050	
Max	0.0009	0.0000	0.0062	0.0020	0.0010	0.0007	0.0000	0.0060	0.0190	0.0050	0.0120	0.0050	0.0018	0.0120	0.0065	0.0018	0.0050	0.0045	0.0000	0.0005	0.0020	0.0070	0.0050	0.0100			

	Evaluated Eccentricity		1X	0.0001	0.0000	0.0029	0.0008	0.0002	0.000
--	------------------------	--	----	--------	--------	--------	--------	--------	-------

BALANCE RESULTS

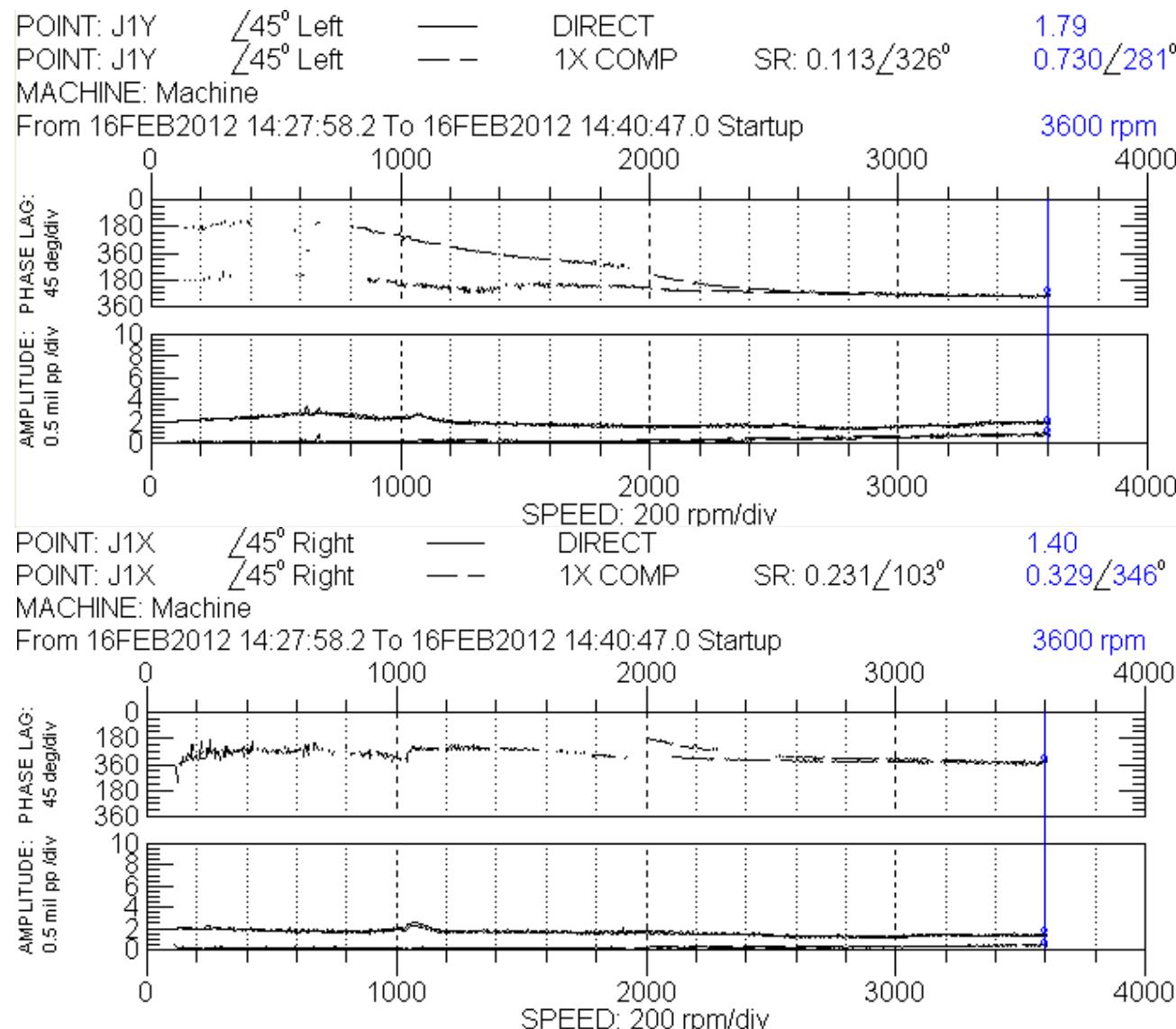
Brush GMS OGE Tinker				Rotor Resonance Summary								David Schafer				2/16/2012			
Speed RPM	J1V		J1H		J2V		J2H		S1V		S1H		S2V		S2H				
	Amplitude (mils)	Phase (deg)	Amplitude (mils)	Phase (deg)	Amplitude (mils)	Phase (deg)	Amplitude (mils)	Phase (deg)	Amplitude (ips)	Phase (deg)	Amplitude (ips)	Phase (deg)	Amplitude (ips)	Phase (deg)	Amplitude (ips)	Phase (deg)			
600	0.139	216	0.164	263	0.159	342	0.19	161	0.007	0	0.009	344	0.007	0	0.007	353			
700	0.021	63	0.175	264	0.195	32	0.195	165	0.007	0	0.009	344	0.007	0	0.007	353			
800	0.093	117	0.18	263	0.128	29	0.185	157	0.007	0	0.007	344	0.007	0	0.007	353			
900	0.123	215	0.082	300	0.103	0	0.2	142	0.007	0	0.007	344	0.007	0	0.007	353			
1000	0.159	243	0.021	333	0.154	340	0.231	134	0.007	0	0.007	344	0.007	0	0.004	353			
1100	0.303	290	0.144	249	0.385	328	0.324	151	0.004	0	0.004	344	0.004	0	0.004	353			
1200	0.262	315	0.149	236	0.442	349	0.303	154	0.004	0	0.004	344	0.007	0	0.004	353			
1300	0.272	347	0.144	240	0.55	9	0.308	156	0.007	0	0.004	344	0.007	0	0.004	353			
1400	0.267	7	0.175	249	0.571	21	0.314	167	0.004	0	0.004	344	0.007	0	0.004	353			
1500	0.216	35	0.185	261	0.56	35	0.298	170	0.004	0	0.004	344	0.004	0	0.009	353			
1600	0.17	38	0.195	263	0.524	42	0.262	173	0.004	0	0.004	344	0.004	0	0.009	353			
1700	0.134	58	0.18	278	0.493	48	0.236	167	0.004	0	0.004	344	0	0	0.004	353			
1800	0.098	72	0.154	290	0.478	53	0.211	160	0.004	0	0.004	344	0.004	0	0.009	353			
1900	0.087	90	0.098	302	0.463	61	0.226	153	0.009	0	0.004	344	0.004	0	0.009	353			
2000	0.19	139	0.093	174	0.442	86	0.319	149	0.007	0	0.004	344	0.004	0	0.007	353			
2100	0.226	180	0.247	218	0.334	106	0.334	175	0	0	0.004	344	0.004	0	0.007	353			
2200	0.206	207	0.236	241	0.267	92	0.272	180	0.007	0	0	344	0.004	0	0.007	353			
2300	0.226	227	0.226	262	0.252	81	0.211	180	0.009	0	0.004	344	0.004	0	0.007	353			
2400	0.262	239	0.226	262	0.242	78	0.18	177	0.009	0	0.004	344	0.007	0	0.004	353			
2500	0.303	246	0.221	262	0.262	79	0.185	170	0.013	0	0.009	344	0.007	0	0.007	353			
2600	0.339	254	0.226	304	0.236	90	0.17	177	0.009	0	0.007	344	0.007	0	0.004	353			
2700	0.36	263	0.226	313	0.236	95	0.134	180	0.009	0	0.007	344	0.007	0	0.004	353			
2800	0.401	267	0.242	320	0.221	101	0.123	196	0.013	0	0.007	344	0.007	0	0.004	353			
2900	0.452	271	0.262	321	0.195	108	0.108	141	0.018	0	0.013	344	0.009	0	0.004	353			
3000	0.514	275	0.308	323	0.185	109	0.093	141	0.022	0	0.016	344	0.009	0	0.004	353			
3100	0.571	283	0.365	331	0.185	117	0.093	119	0.027	0	0.016	344	0.013	0	0.009	353			
3200	0.56	284	0.334	338	0.195	129	0.128	117	0.027	0	0.022	344	0.016	0	0.013	353			
3300	0.601	284	0.334	342	0.216	145	0.108	109	0.031	0	0.029	344	0.016	0	0.013	353			
3400	0.709	284	0.396	339	0.211	169	0.051	73	0.031	0	0.036	140	0.022	0	0.02	353			
3500	0.699	290	0.437	352	0.2	156	0.149	72	0.036	277	0.04	139	0.027	0	0.022	353			
3600	0.73	281	0.329	346	0.37	180	0.149	117	0.04	283	0.045	143	0.029	0	0.031	353			

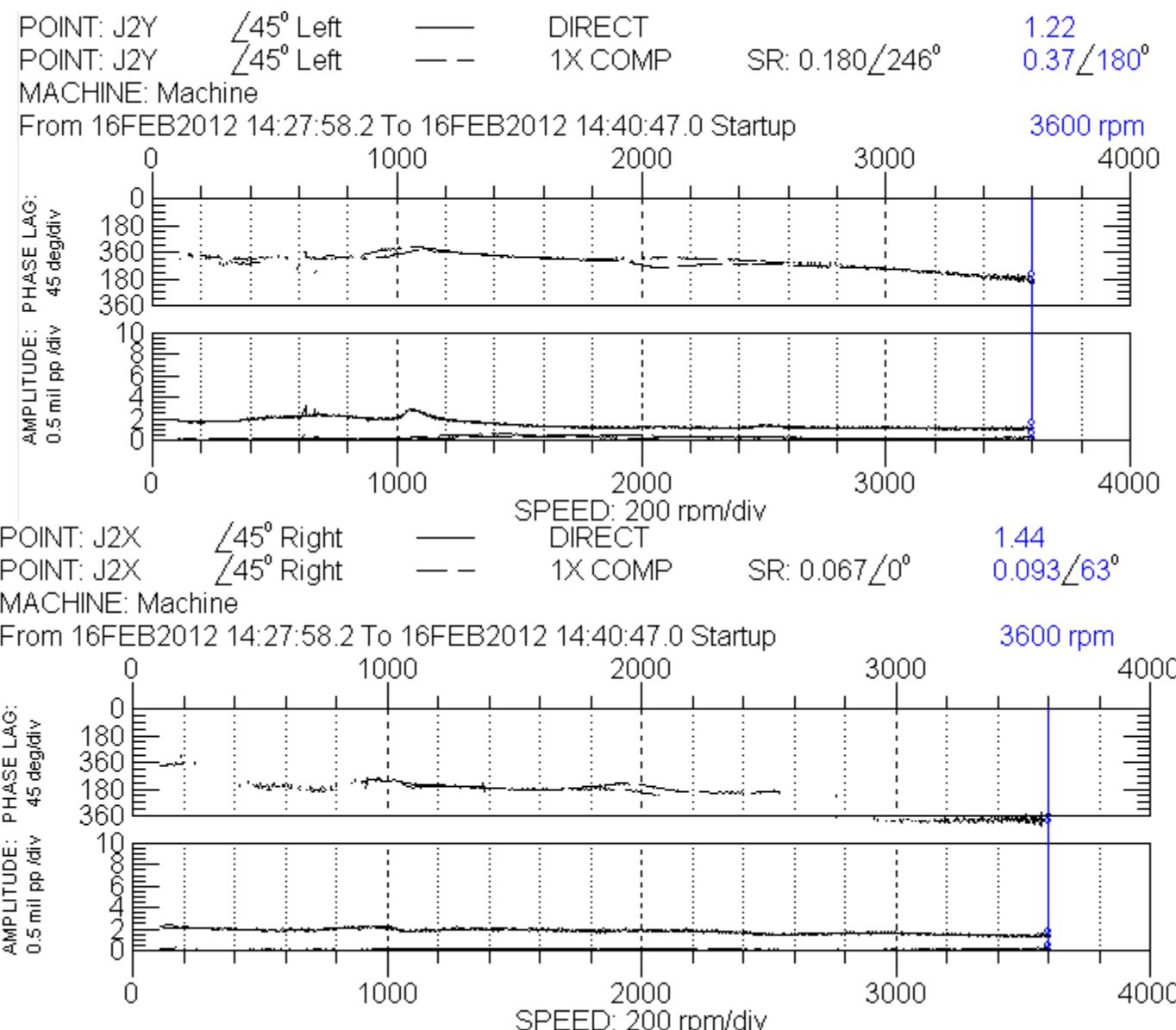
J1V = Journal 1 Vertical

J1H = Journal 1 Horizontal

J2V = Journal 2 Vertical

J2H = Journal 2 Horizontal


S1V = Seismic 1 Vertical


S1H = Seismic 1 Horizontal

S2V = Seismic 2 Vertical

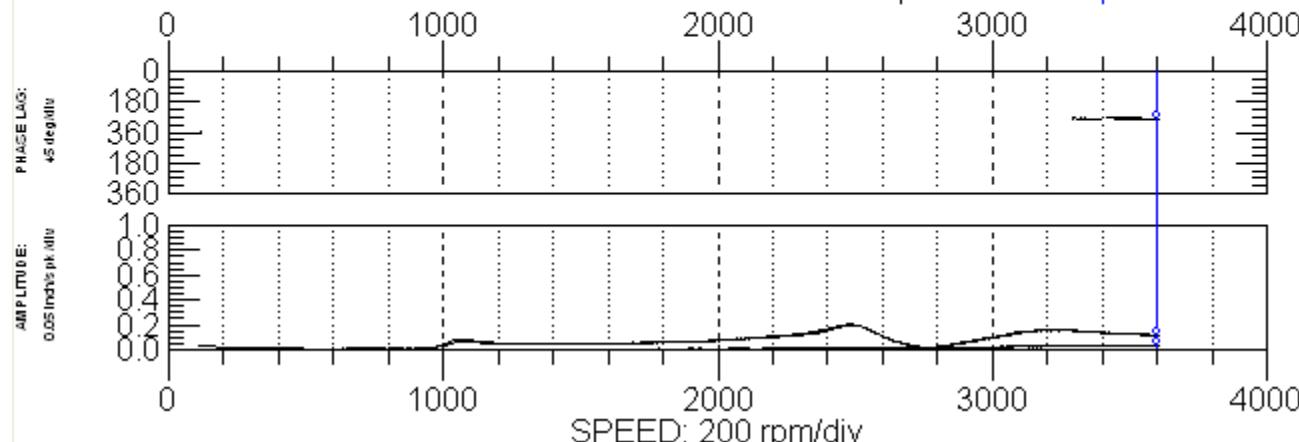
S2H = Seismic 2 Horizontal

Bode Plots

POINT: S1Y $\angle 45^\circ$ Left — DIRECT 0.117
POINT: S1Y $\angle 45^\circ$ Left — — 1X UNCOMP 0.040 $\angle 283^\circ$

MACHINE: Machine

From 16FEB2012 14:27:58.2 To 16FEB2012 14:40:47.0 Startup


CT 0.117

0.117

0.040 / 283

From 16FEB2012 14:27:58.2 To 16FEB2012 14:40:47.0 Startup

3600 rpm

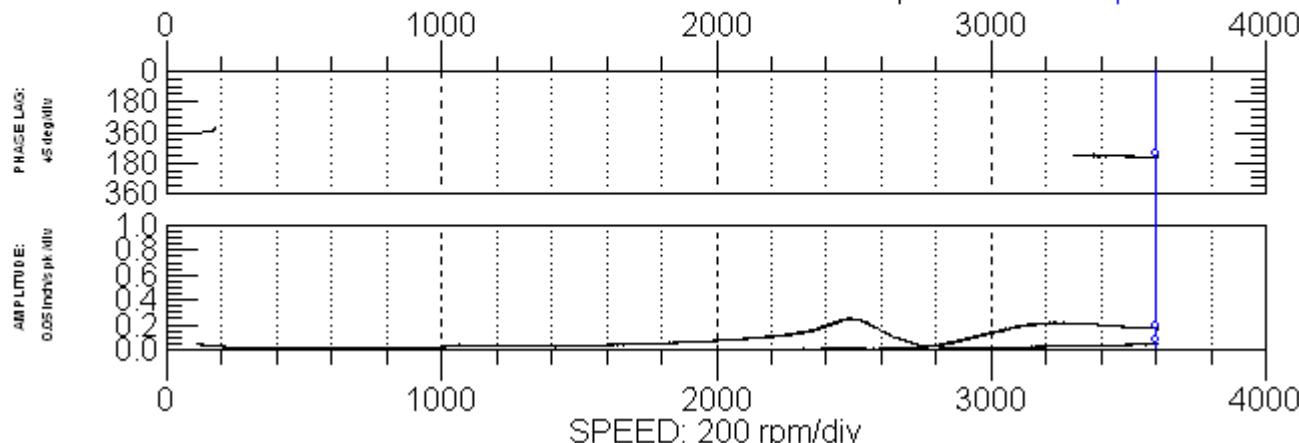
POINT: S1X $\angle 45^\circ$ Right — DIRECT 0.169
POINT: S1X $\angle 45^\circ$ Right — — 1X UNCOMP 0.045 $\angle 14^\circ$

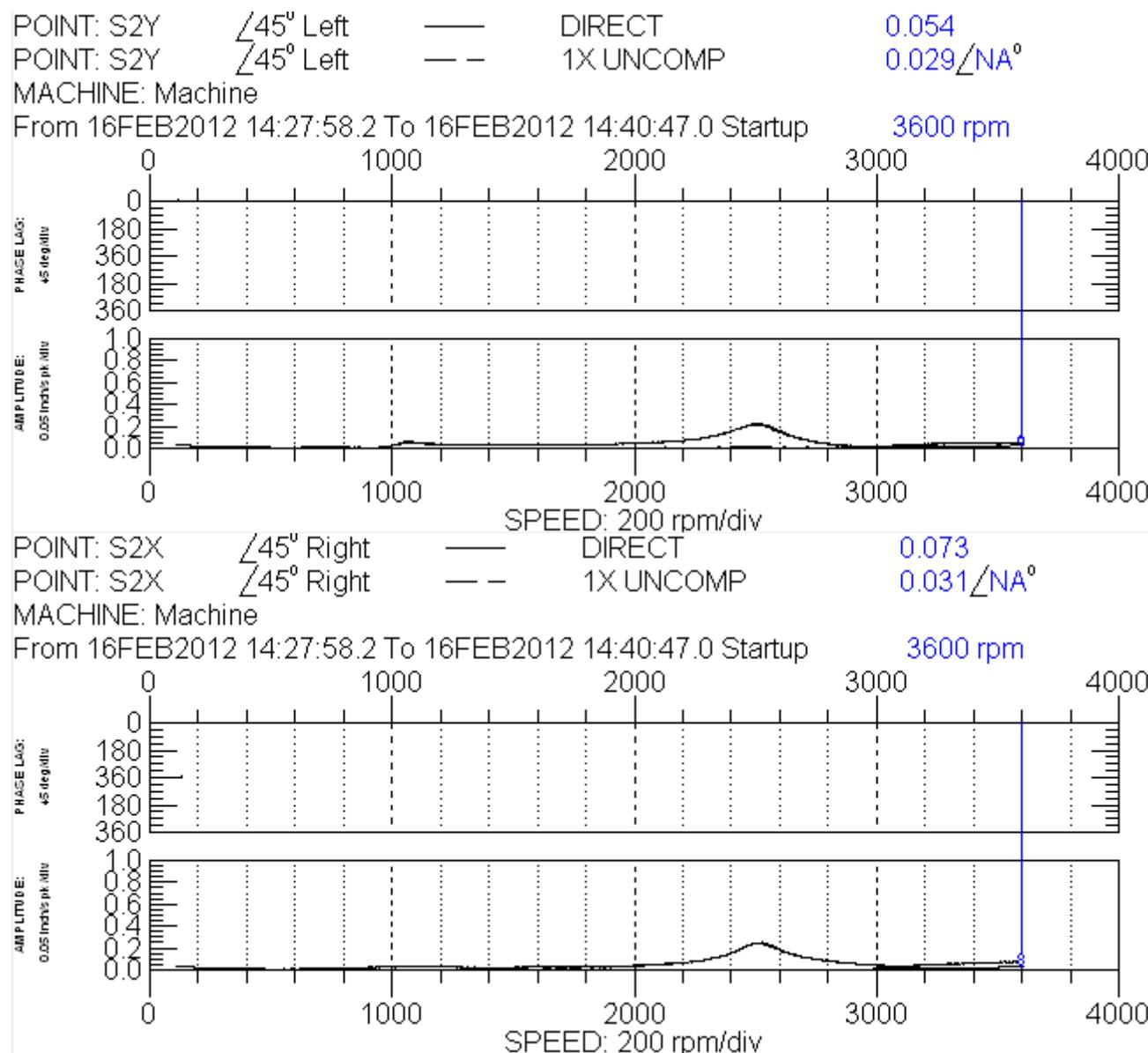
MACHINE: Machine

From 16FEB2012 14:27:58.2 To 16FEB2012 14:40:47.0 Startup

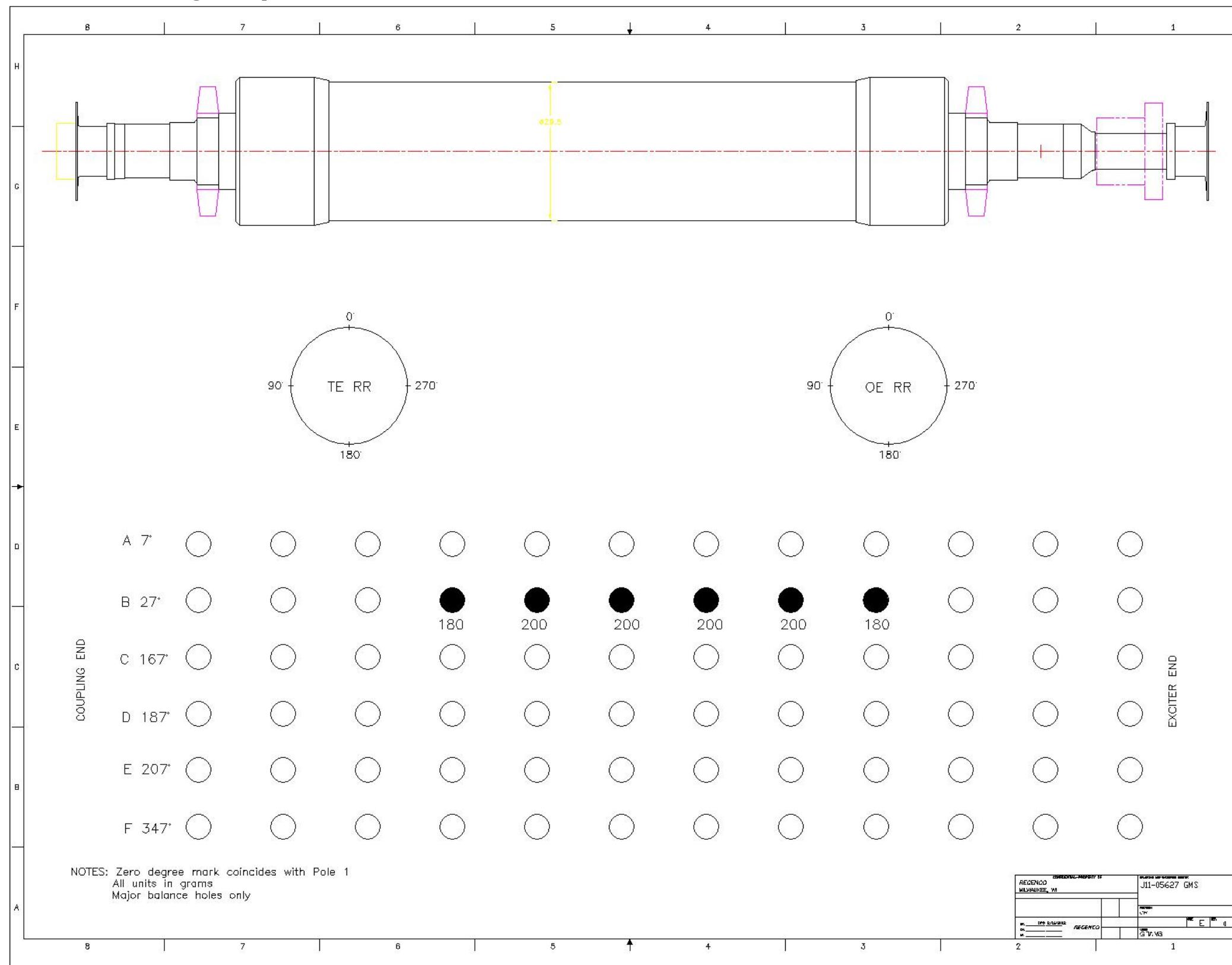
ECT 0.16

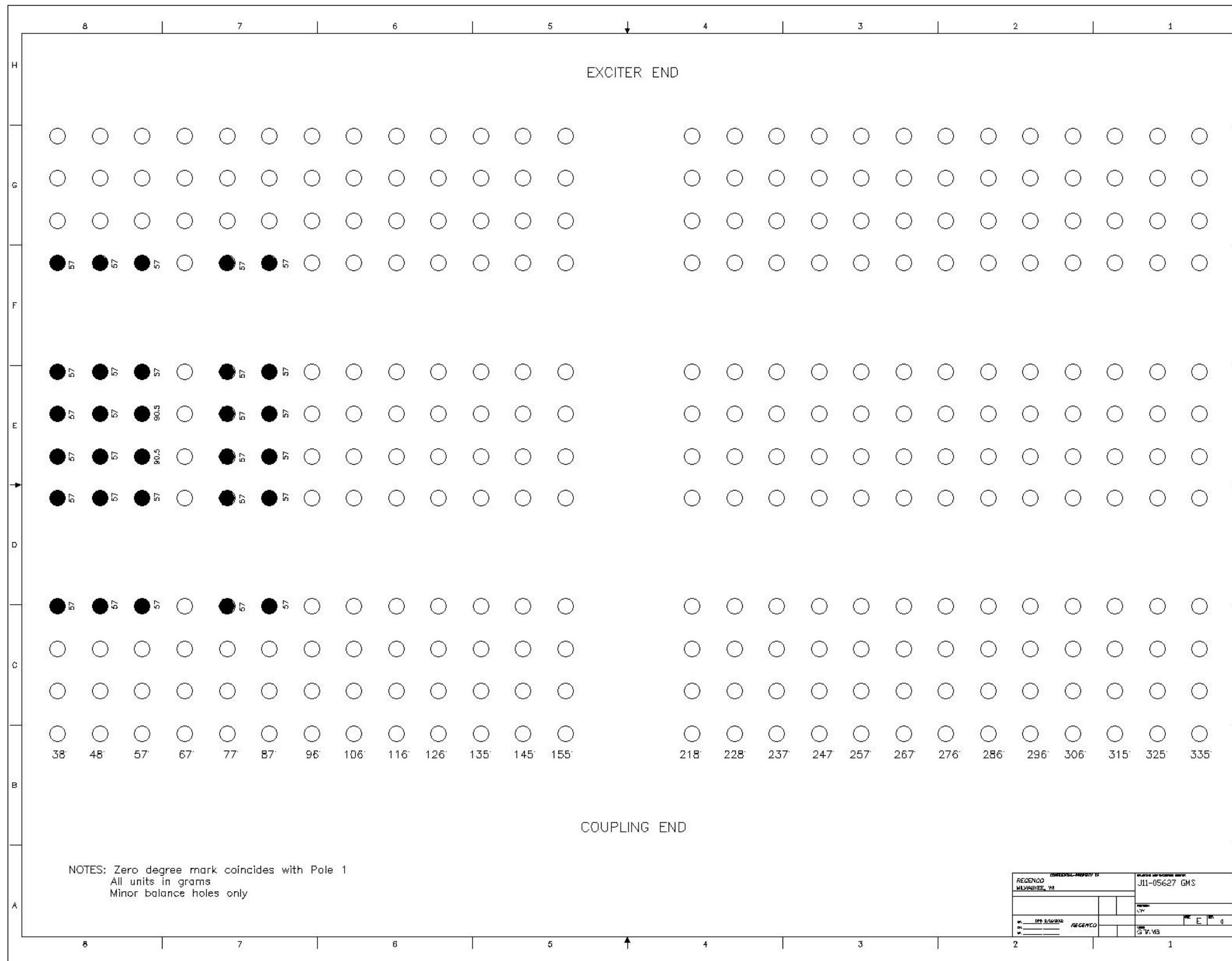
0.169

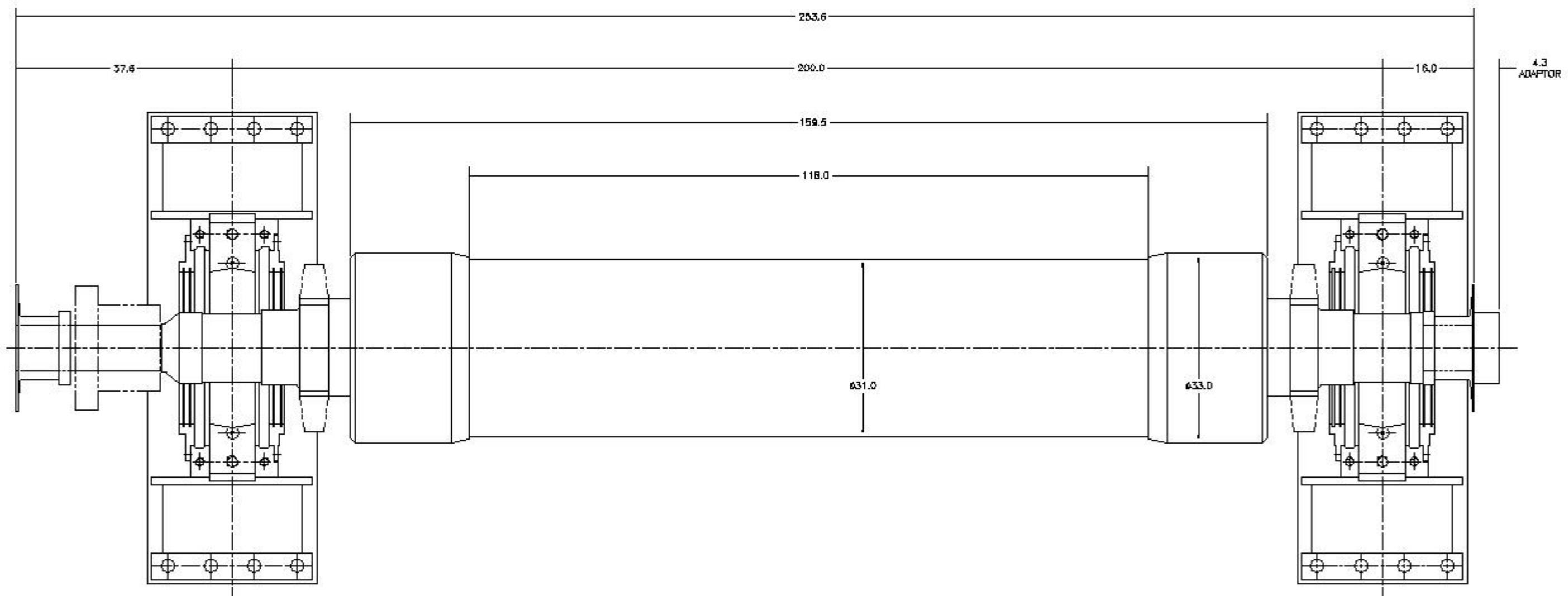

0.045 / 143


From 16FEB2012 1

0 1000 2000


40:47.0 Startup


3600 rpm


Rotor Balance Weight Map

NOTES: Zero degree mark coincides with Pole 1
All units in grams
Minor balance holes only

REGENTO		COMMERCIAL PROPERTY IS		PLATINUM INFORMATION CENTER	
WILMINGTON, DE				J11-05627 GMS	
				SEARCH	
				VIEW	
IN:	END EXPIRATION	REGENTO		E	0
IN:					
IN:				SV:15	

Rotor Setup